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 Functional verification is a process to ensure that a 

design implements intended functionality.

 Coverage are used as a metric

 Avoid unnecessary repetitions of verification.

 Quantify the completeness of the test suites.
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 Traditionally, coverage metrics are analyzed in a 

simulation environment.
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 Due to slow simulation speed, we can emulate the 

designs using hardware accelerator (FPGA).

 Since many signals in emulator are unobservable, 

conventional coverage analysis methods for simulator 

cannot be directly applied to emulator.
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 Several previous works proposed hardware coverage 

monitors
 Balston, Kyle, et al."Post-Silicon Code Coverage for Multiprocessor 

System-on-Chip Designs” ( IEEE Computers  2013)

 Grinwald, Raanan, et al. "User defined coverage—a tool supported 
methodology for design verification." (DAC 1998)

 Bojan, Tommy, et al."Functional Coverage Measurements and Results 
in Post-Silicon Validation of Core™2 Duo Family“ (HLDVT 2007)
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 Only parts of the design are synthesized to the 

emulator:

 Behavioral code is non–synthesizable.

 Emulator has poor observability.

 The designs are put in both simulator and emulator.
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 Coverage signals may be analyzed across a simulator 

and an emulator.

 Neither conventional coverage techniques nor 

hardware coverage monitors can be applied.
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 We propose a comprehensive methodology to analyze 

coverage in a hardware-accelerated (emulator + 

simulator) environment.

 Our methodology uses modified assertions.

 Assertions can provide rich expressions to detect coverage 

events.
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 We propose different types of coverage assertions

extending conventional assertions to analyze coverage.

 An Assertion Operation Graph (AOG) is proposed to 

represent the operations of coverage assertions.

 A set of graph-based algorithms are proposed to 

minimize the hardware and performance overheads of 

coverage assertions.
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 In hardware-accelerated environment, a coverage event 
may consist of signals in the simulator, emulator, or even 
both.

 Three types of coverage events:

 Simulated event

 Emulated event

 Hybrid event

 An assertion used to detect a coverage event is called a 
coverage assertion.

 Three types of coverage assertions:

 Simulated assertion (S_Cassert)

 Emulated assertion (E_Cassert)

 Hybrid assertion (H_Cassert)
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Simulator

 A coverage assertion for detecting the coverage event 

inside the simulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: S_Cassert S1( CPU_ID == 0 && CPU0.Core_ID == 1 );
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 Existing assertion languages can be used

 SystemVerilog Assertion (SVA)
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 A coverage assertion for detecting the coverage event 

inside the emulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: E_Cassert E1( CPU_ID == 0 && CPU0.Core_ID == 1 );

16

Emulator

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID



NTHU-CS VLSI/CAD LAB 17

Emulator
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 Detect the coverage event composed of both simulated 
signals and emulated signals.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: H_Cassert H1( CPU_ID == 0 && CPU0.Core_ID == 1 );

 A hybrid coverage assertion is decomposed into 

 Simulated coverage assertions 

 Emulated coverage assertions

 Auxiliary signals
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 Hardware cost

 Simulation time

 Synchronization time
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 Problem Description

 Given: A set of coverage assertions

 Goal: Reduce the hardware and performance overheads 

caused by coverage assertions
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Assertion Operation Graph 

(AOG).
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 : operation perform in simulator

 : operation perform in emulator

 : operation has not been assigned

 Weight of each edge: data width
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 An AOG is similar to a data flow graph. The 

optimization approaches on the data flow graph can be 

modified to apply on an AOG.

 e.g. Common Sub-expression Elimination
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 All unsigned nodes need to be assigned either to a 

simulator or an emulator.

 Careless assignment of those nodes can lead to high 

hardware overhead in the emulator or high total CPU 

time.

 Since synchronization time is considered as the most 

consuming part of the total CPU time, our partition 

algorithm focuses on optimizing synchronization time.
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 Different assignment results could lead to different 

synchronization overhead amounts.

 Our goal is to minimize the number of data bits needed 

for communication.
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 This problem can be modeled as a constrained two-

way partitioning problem.

 We first obtain an initial solution and then modify the 

Fiduccia–Mattheyses (FM) algorithm to solve this 

problem.
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 Hardware-accelerated platform

 Simulator: ISim simulator in Xilinx ISE

 Emulator: Vertex-6 FPGA emulator

 Interface: JTAG 

 Adopted Design: 

 LCD Controller

 ADPCM Encoder and Decoder

 Deblocking Filter
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 Adopted coverage metrics:

 Cross-product coverage

 Branch coverage

 Numbers of coverage assertions:
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Design # of S_Cassert # of E_Cassert # of H_Cassert

LCD Controller 19 20 34

ADPCM Enc./Dec. 121 115 268

Deblocking Filter 170 198 381
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Design original (#LUTs) optimized (#LUTs) Reduction Ratio

LCD Controller 2665 1595 40.2%

ADPCM Enc./Dec. 9920 7552 23.8%

Deblocking Filter 48583 30730 36.7%

Average 33.6%
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 To measure coverage in a hardware-accelerated 

environment, we propose using three types of 

coverage assertions.

 In addition, an Assertion Operation Graph (AOG) and 

graph-based algorithms are proposed to optimize the 

overheads of coverage assertions.

 The experimental results showed that we can analyze 

coverage metrics across a simulator and an emulator. 

Also, we achieved an encouraging reduction of 

overheads caused by coverage analysis.
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Thank you!


