
NTHU-CS VLSI/CAD LAB

Hsuan-Ming Chou, Hong-Chang Wu, Yi-Chiao Chen,

Jean Tsao, and Shih-Chieh Chang

National Tsing Hua University, Taiwan

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

2

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

3

NTHU-CS VLSI/CAD LAB

 Functional verification is a process to ensure that a

design implements intended functionality.

 Coverage are used as a metric

 Avoid unnecessary repetitions of verification.

 Quantify the completeness of the test suites.

4

Design
Under

Verification

Testbench (Verifier)

Design
under

Verification

NTHU-CS VLSI/CAD LAB

 Traditionally, coverage metrics are analyzed in a

simulation environment.

5

Host Computer

Simulator

NTHU-CS VLSI/CAD LAB

 Due to slow simulation speed, we can emulate the

designs using hardware accelerator (FPGA).

 Since many signals in emulator are unobservable,

conventional coverage analysis methods for simulator

cannot be directly applied to emulator.

6

Emulator (FPGA)

RTL Design
In

terface

Host Computer

Signals

Simulator

NTHU-CS VLSI/CAD LAB

 Several previous works proposed hardware coverage

monitors
 Balston, Kyle, et al."Post-Silicon Code Coverage for Multiprocessor

System-on-Chip Designs” (IEEE Computers 2013)

 Grinwald, Raanan, et al. "User defined coverage—a tool supported
methodology for design verification." (DAC 1998)

 Bojan, Tommy, et al."Functional Coverage Measurements and Results
in Post-Silicon Validation of Core™2 Duo Family“ (HLDVT 2007)

7

Emulator (FPGA)

RTL DesignIn
terface

Host Computer

Signals

Simulator
Coverage
monitor

NTHU-CS VLSI/CAD LAB

 Only parts of the design are synthesized to the

emulator:

 Behavioral code is non–synthesizable.

 Emulator has poor observability.

 The designs are put in both simulator and emulator.

8

Hardware-Accelerated Environment

Emulator (FPGA)

RTL Design

In
terface

Host Computer

Simulator

Signals Signals

NTHU-CS VLSI/CAD LAB

 Coverage signals may be analyzed across a simulator

and an emulator.

 Neither conventional coverage techniques nor

hardware coverage monitors can be applied.

9

Emulator
Host Computer

Simulator

RTL
Design

RTL or
Behavioral

Design

In
terface

Signal S1 Signal S2

S1== 0 && S2 == 1?

NTHU-CS VLSI/CAD LAB

 We propose a comprehensive methodology to analyze

coverage in a hardware-accelerated (emulator +

simulator) environment.

 Our methodology uses modified assertions.

 Assertions can provide rich expressions to detect coverage

events.

10

NTHU-CS VLSI/CAD LAB

 We propose different types of coverage assertions

extending conventional assertions to analyze coverage.

 An Assertion Operation Graph (AOG) is proposed to

represent the operations of coverage assertions.

 A set of graph-based algorithms are proposed to

minimize the hardware and performance overheads of

coverage assertions.

11

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

12

NTHU-CS VLSI/CAD LAB

 In hardware-accelerated environment, a coverage event
may consist of signals in the simulator, emulator, or even
both.

 Three types of coverage events:

 Simulated event

 Emulated event

 Hybrid event

 An assertion used to detect a coverage event is called a
coverage assertion.

 Three types of coverage assertions:

 Simulated assertion (S_Cassert)

 Emulated assertion (E_Cassert)

 Hybrid assertion (H_Cassert)

13

NTHU-CS VLSI/CAD LAB

Simulator

 A coverage assertion for detecting the coverage event

inside the simulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: S_Cassert S1(CPU_ID == 0 && CPU0.Core_ID == 1);

14

Memory

Data

Addr

Cmd

Memory

Controller

Cmd

Addr

Data

Resp

CPU 0

Cmd

Addr

Data

Resp

CPU 1Attribute Values

CPU_ID (1 bit) 0,1

Core_ID (2 bits) 0,1,2,3

CPU_ID

Core_ID

Core_ID

Core 0

Core 1

Core 2
Core 3

Core 0

Core 1

Core 2
Core 3

NTHU-CS VLSI/CAD LAB

 Existing assertion languages can be used

 SystemVerilog Assertion (SVA)

15

Simulator
Testbench

integer S1;

assert(CPU_ID == 0 && CPU0.Core_ID == 1) S1++;

else;

Memory

Controller

Memory CPU 0

CPU 1CPU_ID

Core_ID

S_Cassert S1(CPU_ID == 0 && CPU0.Core_ID == 1); SVA

NTHU-CS VLSI/CAD LAB

 A coverage assertion for detecting the coverage event

inside the emulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: E_Cassert E1(CPU_ID == 0 && CPU0.Core_ID == 1);

16

Emulator

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

NTHU-CS VLSI/CAD LAB 17

Emulator

E_Cassert E2(CPU_ID == 0 && CPU0.Core_ID == 0);

Hardware Assertion E1

Counter

E_Cassert E1(CPU_ID == 0 && CPU0.Core_ID == 1);

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

Hardware Assertion E2

Counter

Synthesize

Scan Out

NTHU-CS VLSI/CAD LAB

 Detect the coverage event composed of both simulated
signals and emulated signals.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: H_Cassert H1(CPU_ID == 0 && CPU0.Core_ID == 1);

 A hybrid coverage assertion is decomposed into

 Simulated coverage assertions

 Emulated coverage assertions

 Auxiliary signals

18

EmulatorSimulator

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

NTHU-CS VLSI/CAD LAB 19

Emulator

H_Cassert H1(CPU_ID == 0 && CPU0.Core_ID == 1);

Hardware Assertion E1

Simulator

Testbench

S_Cassert S1(CPU_ID == 0 && E1 == 1);

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

S_Cassert S1(CPU_ID == 0 && E1 == 1); E_Cassert E1(CPU0.Core_ID == 1);

Partition

E1_out

E1__out

(Different ways of implementation may lead to different overheads)

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

20

NTHU-CS VLSI/CAD LAB

 Hardware cost

 Simulation time

 Synchronization time

21

EmulatorHost Computer

Simulator

RTL

Testbench D
river

B
u

s In
terfaceRTL

S
ystem

 B
u

s

Tran
sacto

r

P
ro

xy

P
L

I

NTHU-CS VLSI/CAD LAB

 Problem Description

 Given: A set of coverage assertions

 Goal: Reduce the hardware and performance overheads

caused by coverage assertions

22

NTHU-CS VLSI/CAD LAB 23

Assertion Operation Graph

(AOG).

Reduce the nodes on AOG.

Partition the AOG into two

sub-graph.

Construction

Reduction

Partition

S_CassertS_CassertS_CassertE_CassertH_Cassert

S_CassertS_CassertE_Cassert
E_Cassert

S_CassertS_Cassert
S_Cassert

NTHU-CS VLSI/CAD LAB

 : operation perform in simulator

 : operation perform in emulator

 : operation has not been assigned

 Weight of each edge: data width

24

Construction Reduction Partition

Simulated Node

Emulated Node

Unassigned Node

==== &&

Count

2

1

1

1

11

Source==1Grant==0

H_Cassert H1 (CPU_ID == 0 && CPU0.Core_ID == 1)

CPU0.Core_ID

10

CPU_ID

H1

1

16

NTHU-CS VLSI/CAD LAB

 An AOG is similar to a data flow graph. The

optimization approaches on the data flow graph can be

modified to apply on an AOG.

 e.g. Common Sub-expression Elimination

25

Construction Reduction Partition

==== &&

Count

2
1

1

11

CPU0.Core_ID

1

0 H1

1

16

H2 Count
16

&& ====

READ

1 1

2

2

1

2

2

2

CPU0.Core_ID == 1

cmdType

CPU_ID

H_Cassert H1 (CPU_ID == 0 && CPU0.Core_ID == 1)

H_Cassert H2 (cmdType == READ && CPU0.Core_ID == 1)

NTHU-CS VLSI/CAD LAB

 An AOG is similar to a data flow graph. The

optimization approaches on the data flow graph can be

modified to apply on an AOG.

 e.g. Common Sub-expression Elimination

26

Construction Reduction Partition

== &&

Count

2
1

1

1
1

CPU0.Core_ID

1

0 H1

1

16

H2 Count
16

&&

==

==

READ

1

2

2

1

2

CPU0.Core_ID == 1

cmdType

CPU_ID

H_Cassert H1 (CPU_ID == 0 && CPU0.Core_ID == 1)

H_Cassert H2 (cmdType == READ && CPU0.Core_ID == 1)

NTHU-CS VLSI/CAD LAB

 All unsigned nodes need to be assigned either to a

simulator or an emulator.

 Careless assignment of those nodes can lead to high

hardware overhead in the emulator or high total CPU

time.

 Since synchronization time is considered as the most

consuming part of the total CPU time, our partition

algorithm focuses on optimizing synchronization time.

27

Construction Reduction Partition

NTHU-CS VLSI/CAD LAB

 Different assignment results could lead to different

synchronization overhead amounts.

 Our goal is to minimize the number of data bits needed

for communication.

28

Construction Reduction Partition

NTHU-CS VLSI/CAD LAB

 This problem can be modeled as a constrained two-

way partitioning problem.

 We first obtain an initial solution and then modify the

Fiduccia–Mattheyses (FM) algorithm to solve this

problem.

29

Construction Reduction Partition

== &&

Count

2
1

1

1

CPU0.Core_ID

1

0 H1

1

16

H2 Count
16

&&

==

==

READ

1

1

2

2

1

2
cmdType

CPU_ID

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

30

NTHU-CS VLSI/CAD LAB

 Hardware-accelerated platform

 Simulator: ISim simulator in Xilinx ISE

 Emulator: Vertex-6 FPGA emulator

 Interface: JTAG

 Adopted Design:

 LCD Controller

 ADPCM Encoder and Decoder

 Deblocking Filter

31

http://opencores.org/

NTHU-CS VLSI/CAD LAB

 Adopted coverage metrics:

 Cross-product coverage

 Branch coverage

 Numbers of coverage assertions:

32

Design # of S_Cassert # of E_Cassert # of H_Cassert

LCD Controller 19 20 34

ADPCM Enc./Dec. 121 115 268

Deblocking Filter 170 198 381

NTHU-CS VLSI/CAD LAB 33

Design original (#LUTs) optimized (#LUTs) Reduction Ratio

LCD Controller 2665 1595 40.2%

ADPCM Enc./Dec. 9920 7552 23.8%

Deblocking Filter 48583 30730 36.7%

Average 33.6%

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

34

NTHU-CS VLSI/CAD LAB

 To measure coverage in a hardware-accelerated

environment, we propose using three types of

coverage assertions.

 In addition, an Assertion Operation Graph (AOG) and

graph-based algorithms are proposed to optimize the

overheads of coverage assertions.

 The experimental results showed that we can analyze

coverage metrics across a simulator and an emulator.

Also, we achieved an encouraging reduction of

overheads caused by coverage analysis.

35

NTHU-CS VLSI/CAD LAB 36

Thank you!

