UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN I

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Contact Pitch and Location Prediction for
Directed Self-Assembly Template Verification

Zigang Xiao, Yuelin Du, Martin D.F. Wong
University of lllinois at Urbana-Champaign

He Yi, H.-S. Philip Wong
Stanford University

Hongbo Zhang
Synopsys Inc.

ASPDAC 2015



Background

e Directed Self-Assembly (DSA) is promising
for contact holes patternmg in 7 nm node
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Fig. 1: Contact patterning with DSA
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Fig. 2: Contact patterns formed by various DSA templates




DSA Verification: Motivation

e Variation in template and process can cause
serious problem

mm template

Small variation Intended mask Large variation
e Challenge in DSA verification
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Contact Pitch and Location Prediction
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(a) Original mask.  (b) DSA template printed. (c) Prediction results.
Fig 1. : problem illustration
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Fig 2. : DSA-aware resolution enhancement flow



Machine Learning based Prediction Flow
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Edge Sensitivity based DSA Model




Aligning Mask and Template

e Aligning two shapes
e Dynamic Time Warping (DTW)
— Dynamic programming based
e Problem: min dist match # correct match

Align




Adapting DTW to Work
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Fig 1: Converting 2D to pseudo time series



Matched Points Features
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e Point Distance Feature
—'+' if far away from mask
— =" if inside mask

e Filling missing values

e Edge Orientation Feature
— Histogram of Gradient

No match

mask template
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e Add variation to an ideal mask to generate
templates (with variation)

— Gaussian filter to blur boundary
— Strategy to random threshold the regions
— Smooth out the boundary connections

e DSA simulator to generate contact

e Labels (pitch size and hole locations) can be
detected using computer vision techniques.
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Data Preparation: Quality

e Data is critical for training a good model
— Accurate and contain as little noise as possible

— Enough variance in the feature and output space

— Size matters for model complexity
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Machine Learning Algorithms

e Compare with different feature
combinations using 10-fold cross-
validation

o Artificial Neural Network (ANN)
e Random Forest (RF)
o Support Vector Regression (SVR)
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e Performance Metric: Root Mean Square Error (RMSE)

RMSE = \/12(21. -z)
n i=1

e Comparison of algorithms and feature
combinations for Pitch Size Model
— Random Forest (RF), Artificial Neural Network
(ANN), Support Vector Regression (SVR)

— Matched Points (MP), Point Distance (PD),
Histogram of Gradient (HOG)

Name MP Time (s) PD Time (s) HOG Time (s) MP+HOG Time (s) PD+HOG Time (s)

RF 0.292 55.037 0.347 28.044 0.367 18.382 0.329 70.982 0.419 43.964
ANN 0.148 388.969 0.312 251.62 0.17 33.766 0.14 713.38 0.125 446.23
SVR 0.285 1.656 0.387 1.178 0.233 1.185 0.148 2.577 0.24 2.256
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Experimental Results - 11

e Contact Location Prediction Results

Name Tq Y1 To Y2 Mean' | Pitch* | Time (s)

ANN 0.132 0.145 0.157 0.201 0.158 0.194 64.596
RF 0.476 0.361 0.398 0.351 0.396 0.376 30.297

SVR 0.117 0.137 0.117 0.135 0.126 0.153 0.846

*(x1, y1) and (x2, y2) denote the 2D coordinates of the contacts.
T Mean error over all the predicted coordinates.

. Computed as the euclidean distance between predicted contact locations.
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Feature Selection and Model Tuning
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Fig 1: Model Selection Fig 2: Learning Curve
Name T1 Y1 To Y2 Mean' | Pitch* | Time (s)
ANN 0.132 0.145 0.157 0.201 0.158 0.194 64.596
RF 0.476 0.361 0.398 0.351 0.396 0.376 30.297
SVR 0.117 0.137 0.117 0.135 0.126 0.153 0.846

*(x1, y1) and (x2, y2) denote the 2D coordinates of the contacts.
Mean error over all the predicted coordinates.
i Computed as the euclidean distance between predicted contact locations. 16




Performance of Tuned Model

Testing: R=0.99891
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Fig 1: Error histogram of predicted values Fig 2: Regression plot of tuned model

Most errors distribute around zero error

RMSE = 0.135, overall nearly perfect

Only a few outliners (37) beyond 0.5 unit but smaller than 1.
Fitted line in regression plot very close to 1
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e DSA is a promising lithography in patterning
contact holes at 7 nm node

e Lithography verification is crucial for the
success of DSA

e Studied pitch size and contact location
prediction problem

e Proposed a machine learning based
approach, including DSA model and features

e Performed extensive experiment and
demonstrated effectiveness and efficiency of
ML-based approach
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