Automatic Abstraction Refinement
of Transition Relation for PDR

Kuan Fan, Ming-Jen Yang,
Chung-Yang (Ric) Huang
2016.1.26

Outline

Introduction

— Property Directed Reachability
— Abstraction

The Proposed Method
Experimental Results
Conclusion

Introduction

Property Directed Reachability

* PDR! aka IC3?, is a SAT-based model checking
algorithm developed by Aaron Bradley in 2011.

* |C3 won the 3rd place in HWMCC’10 and only

lost, by a narrow margin, to two mature
engines (ABC and PdTRAV)

* Best single engine algorithm

IN. E€' n, A. Mishchenko, R. Brayton: Efficient Implementation of Property Directed Reachability (FMCAD’11)
2A. R. Bradely, SAT-based model checking without unrolling (VMCAI'11)

PDR: The Big Picture

* Transition system: M = (V, S, Init(S), Tr(V, S, S’)),
Invariant property: P
* i-step over-approximation sets of clauses: I, I, ...,

Fk

* Five invariants:
1. F,=Init
2. F.=>F_, for 0<i< k-1
3. F;NTr=>F, for 0<i<k-1
4. F. 2 F. , as sets of clauses. for 0<i1<k-1I
5 F,=>P forO<i<k

IN. E€'n, A. Mishchenko, R. Brayton: Efficient Implementation of Property Directed Reachability
(FMCAD’11)

PDR: The Big Picture

* Transition system: M = (V, S, Init(S), Tr(V, S, S’)),
Invariant property: P
* i-step over-approximation sets of clauses: I, I, ...,
F,
* Termination criteria:
— A counterexample is found.
—When Fi < k. F;=F, ;. Then:
1. Init > F;

2. F,NTr =>F,
3. F, =P

PDR in The State Space

* j-step over-approximation sets of clauses: I,
., .., F,

P

PDR in The State Space

* j-step over-approximation sets of clauses: I,
., .., F,

P

PDR in The State Space

* j-step over-approximation sets of clauses: I,
., .., F,

P

N

PDR in The State Space

* j-step over-approximation sets of clauses: I,
., .., F,

Need F; F...

P

N

Fl l
Ly

Abstraction of Latch Variable

* i-step over-over-approximation sets of clauses:
5 J J
F 9 1 9 eeey Fk

Need F. F...

|
Py 1= F,] P

5 '_ j
I_Ol |]

Abstraction of Latch Variable

* i-step over-over-approximation sets of clauses:

b b b
F)F/ ..,F,
—,—| P
F.=F

niulBunn

Abstraction of Transition Relation

* j-step over-approximation sets of clauses: I,
., .., F,

Need F; F...

P

N

Fl l
Ly

Abstraction of Transition Relation

* i-step over-approximation sets of clauses: I,
., .., F,

Abstraction of Transition Relation

* i-step over-approximation sets of clauses: I,
., .., F,

Abstraction of Transition Relation

* i-step over-approximation sets of clauses: I,
., .., F,

on -
RN

Abstraction of Transition Relation

* i-step over-approximation sets of clauses: I,
., .., F,

b3
~

Abstraction of Transition Relation

* i-step over-over-approximation sets of clauses:
» » 2
F 9 1 9 eeey Fk

P

Previous Works

* |C3-Guided Abstraction® * Major difference:

* Lazy Abstraction? — flop-level abstraction & gate-
level abstraction

— Heuristics to handle
counterexamples

1Jason Baumgartner, Alexander Ivrii, Arie Matsliah, and Hari Mony. Ic3- guided abstraction.
(FMCAD’12)

2Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and sat-based reachability
in hardware model checking. (FMCAD’12)

Localization Abstraction

Concrete Circuit A

\ Abstract Circuit A’

Granularity of Abstraction

* Flop-level abstraction

Granularity of Abstraction

Gate-level abstraction

Priority-based Abstraction Refinement!

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails.

Rules of priority propagation:

low
low high high

00 Priority: smaller number
high ow represents higher priority 11 10
2 3

low high O

11
high low

1Alan Mishchenko et al.: Variable time-frame abstraction(IWLS’12)

PDR: Program Flow

Propagate

GLA: a Gate-level, Hybrid Approach?

1Alan Mishchenko et al. Gate-level abstraction revisited(DATE’13)

[Initial abstraction A’]

Cex

Cex

1
\ l’
A ’
A 4
A 4
b 4
b 4
b 4
S -
~- o

kR =k+1 P d
[Model check A’]& Safe
25

The Proposed Method

e Embed GLA-like abstraction refinement in

The Proposed Method: An Overview
Unsafe SAT

PDR

e Embed GLA-like abstraction refinement in

The Proposed Method: An Overview

PDR

Fixpoint

Safe

e Embed GLA-like abstraction refinement in

The Proposed Method: An Overview

PDR

The Proposed Method

* Varying Abstract Model M, of M:
M, =V,S, Init, Tr (V,, S, S,))

w.r.t. abstraction A’

P ™

Invariant p

Blocking and Refining Phase

Using abstract transition relation 77, when
doing local reachability checks.

Any Blocked cube is valid w.r.t. the concrete
model.

May refine abstract counterexamples longer
than current depth k.

Gates added now are remembered for later
incremental UNSAT cores extraction.

Shrinking Phase

 Remove superfluous logic added during Blocking and
Refining Phase

* Make sure five invariants still hold while changing /],
to

1. F,=1Init

o Fop,, LiNTIATE
3. F, A >F.,,
i FoF,.,

5 F. =P

Propagate Block

-- Refine

Experimental Results

Experiments

The proposed method, called AbsPDR, was
implemented in ABC.

We compared it with PDR as implemented in
ABC.

Benchmark: HWMCC’13/14 benchmark suits,
392 instances

Machine: Intel Xeon, 2.5 GHz freq; 32 GB mem.
Timeout: 900 sec

Results Summary

* Focus: the impact of abstraction refinement to original
PDR(run pdr —m in ABC).

* AbsPDR refines only minimal(shortest) counterexamples.
* AbsPDR-a refines long counterexamples as PDR does.
* All other features used in AbsPDR(-a) are identical to PDR.

#Solved
Configuration UNSAFE | SAFE | all DMpasetine | Galned | Lost | Cumulative time (sec)
PDR 31 08 129 0 0 0 246971
PDR-d 36 108 | 144 +15 19 4 231669
AbsPDR 33 115 | 148 +19 33 14 232592
AbsPDR-a 33 114 | 147 +18 32 14 229125

Runtime (s)-AbsPDR

1000

100

0.1

0.01

Runtime Comparison

0.01

0.1

1 10

Runtime (s)-PDR

100

1000

Runtime (s)-AbsPDR-a

1000

100

0.1

0.01

LY ...
€.
® []
[]
L []
L
0.01 0.1 1 10 100 1000

Runtime (s)-PDR

Abstraction Results

Instances unsolved by PDR

Original AbsPDR AbsPDR-a
AnganO8 #FFs | #Ands | #LUTs || #FFs | #FFs % | #LUTs | #LUTs % | #FFs | #FFs% | #LUTs [#LUTs
6s350rb35 243399 | 1550409 | 840338 | 659 0.3 1607 02 | 624 0.3 1644 0.2
6s350rbdf 243399 | 1550412 | 840339 [946 0.4 2320 0.3 851 0.4 2247 0.3
6e353rb036 | 102390 | 622040 | 319623 | 366 0.4 1014 0.3 513 0.5 1441 0.5
fs353rb101 102390 | 622040 | 319623 | 836 0.8 2861 0.9
6s361rbS2584 | 186401 | 1773868 | Hd6836 [77 0.04 299 (.04 77 0.04 299 0.04
6s361rb54373 | 186401 | 1773868 | 846836 || 403 0.2 1716 0.2 776 0.4 3793 0.4
6364rb 12666 | 202686 | 922063 | 613587 | 74 0.04 245 (.04 8 (.04 280) 0.05
6s218b2950 | 58676 | 250531 | 192162 || 2806 | 48 14732 7.7 :
6a286cb07843 | 101639 | 737673 | 366690 || 778 0.8 2589 0.7 916 0.9 3102 0.8
68202b00 GREB] | 473964 | 236741 | 277 0.4 791 0.3 266 0.4 761 0.3
65203019 689ST | 474324 | 236993 || 307 0.4 H83 0.4 338 0.5 951 0.4
65203b4 1 68957 | 474322 | 236994 | 416 0.6 1335 0.6 525 0.8 1733 0.7

the sizes of final abstractions are below 1%

Conclusion

Conclusion

* We present an efficient algorithm that

embeds GLA-like abstraction refinement in
PDR.

* Experimental results show that our approach
outperforms original PDR and complements it
in a large number of benchmark instances.

Thank You!

Localization Abstraction

Concrete Circuit A

\ Abstraction Circuit A’

Abstraction : How To?

* Counterexample-based abstraction (CBA/CEGAR):
— Start with one gates of property/state variable
— See if target hit
— Otherwise, Refine by adding more gates.

* Proof-based abstraction (PBA):

— Look at the UNSAT-core to further decide which
logic(gate) is necessary

* Hybrid method:
— Interleave CBA and PBA

Priority-based Abstraction Refinement!

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails.

lowest priority needed to produce the value 0

Rules of priority propagation:

low 3
low high high 0 O

00 Priority: smaller number
high ow represents higher priority 11 10
2 3

low high 0

11
high low

1Alan Mishchenko et al.: Variable time-frame abstraction(IWLS’12)

Priority-based Abstraction Refinement

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails. 09
Cex is concrete!

Initial priority: {Pls, Constant node,
FOs in time-frame 0} =0
PPIs=1"~n

11
P 00 2 PPI

Priority: smaller number
represents higher priority

Priority-based Abstraction Refinement

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails. 20 Abstract Cex!

Initial priority: {Pls, Constant node,
FOs in time-frame 0} =0
PPIs=1"~n

Priority: smaller number
represents higher priority PP

Added to abstraction

Shrinking Phase

 Remove superfluous logic added during Blocking and
Refining Phase

* Make sure five invariants still hold while changing /],
to :
1. F,=1Init
2. F.=>F.,,
3. F, A >F.,,
4. F,2F,,
5 F. =P

Propagate Block

-- Refine

Shrinking Phase

e Recall that an incremental UNSAT core is
recorded only in terms of those gates added in

current iteration &
 The gates included in previous iterations are
NEVER removed
 Extract incremental UNSAT cores:
— G, = gatesincluded in UNSATCore(F; \ Tr, \
F,,) for0<i1<k-1
— G, = gates included in UNSATCore(F,, A\ =P)
-G.=G,uG, U... UG,

= remove gates do not exist in G, from A’

