
An Energy-efficient Matrix Multiplication Accelerator 

by Distributed In-memory Computing 

on Binary RRAM Crossbar

Leibin Ni1, Yuhao Wang1, Hao Yu1, Wei Yang2,  Chuliang Weng2, Junfeng Zhao2

1School of EEE, Nanyang Technological University, Singapore
2Shannon Laboratory, Huawei Technologies Co., Ltd, China

1



Data Analytics Challenge

2

Data center for future big-data-

oriented society:

1. Leaving data outside a nation will

face serious cyber-security

concern

2. Processing data inside a nation by

traditional Giga-scale system has

high cost

Bandwidth at 100 Gps with

Space of 20,000 sq. ft. Power

of 68 MW and cost of 100M-

USD !!!



Challenge of Data Oriented Computing

Data migration between core and memory is dominated in big-

data application: Memory wall = power wall + bandwidth wall

1.Bandwidth wall:

• Technology limitation: non-scalable 2D interconnect

• System limitation: Configurability

2. Power wall:

• Technology limitation: leakage power of DRAM/SRAM

• System limitation: Low-complexity in-memory analytics

3

A solution with system and technology co-design



Solution?

Big Memory Sea (Non-volatile Memory)

Thousands Small 

Accelerator Cores 

High Bandwidth, Energy-efficient 

Reconfigurable I/Os

4



Existing In-memory Computing Techniques

Flash chips
Control & in-

memory logic

PCB level in-memory accelerators

Micron M500 SSD - Micron Technology, Inc.
http://www.micron.com/products/solid-state-storage/client-ssd/m500-ssd

• Still limited I/O between

memory/storage to in-memory logic

(up to 256/512 due to packaging

limitation)
• PCB level interconnect has high power

overhead: 30pJ/bit/cm compared to on-

chip 40fJ/bit/mm

• Long interconnect trail incurs longer RC

delay on PCB which impacts on the

throughput.

• In-memory logic implemented in

CMOS technology, which incurs large

leakage power

5



Existing In-memory Computing Techniques

Cell-level in-memory accelerators

with fixed simple function

Matsunaga, Shoun, et al. "MTJ-based nonvolatile logic-in-memory

circuit, future prospects and issues." Proceedings of the Conference on

Design, Automation and Test in Europe. European Design and

Automation Association, 2009.

Features:

• In each cell simple logic is

implemented

• Read out results directly

Drawbacks:

• Cell structure becomes much more

complicated thus area overhead is

overwhelming

• Low utilization efficiency of in-

memory logic since they cannot be

shared (dedicated to their cells only)

• Simple functions only (limited by

circuit area for each cell)

6



Non-volatile In-Memory Accelerator 

7

Motivation: Large portion of matrix multiplication is

needed in compressive neural network machine

learning.
• 64.62% of ELM training time are matrix

multiplication.

• Compressive sensing 𝐹 = 𝛹𝑋 is fully based on

matrix multiplication.

Operation in accelerator: All matrix multiplication

operation including 𝑋𝐴,𝐻𝑇𝑇 in ELM, and 𝐹 =  𝛹𝑋 in

compressive sensing.

Why RRAM but not CMOS (GPU or ASIC):
• Logic operation can be done faster with less

dynamic power consumption.

• Eliminate static power with non-volatile memory.



RRAM and RRAM Crossbar (Memristor) 

 Resistive RAM (RRAM)
device
 Two-terminal non-volatile

memory device
 Doping wall that

separates high resistance
material and low
resistance material

 Doping wall can be moved
by voltage/current à
program overall
resistance

 Crossbar structure
 Horizontal wires (top

layer) for input
 Vertical wires (bottom

layer) for output
 RRAM (middle layer) at

cross-points resistances

 Intrinsic
implementation for
matrix-vector
multiplication

8

V I



RRAM-crossbar based In-memory 
Accelerator (XIMA)

• RRAM crossbar enables

in-memory logic linked by

distributed control-bus in

pairs

• Digitization at output with

paralleled comparators

• With additional

encoder/decoder, one can

develop matrix-vector

multiplication based on

distributed in-memory

accelerator (XIMA) Binary interface

9



Communication Protocol

• SW (store word) instruction is to write data into RRAMs in data

(conventional write) or in-memory logic (logic configuration).

• LW (load word) instruction performs as conventional read operation.

• ST (start) instruction means to switch on the logic block for computing

after computation setup.

• WT (wait) operation is to stop reading from instruction queue during

computing.

Traditional read/write

Additional in-memory 

computing

10



Control-bus Design

external processor

LogicData

1

2

3

Address 
decoder

In-pair CMOS control bus

Instruction 
queue

Instruction 
decoder

Data path to 
data array

Data path to in-
memory logic

Row/Column 
to data array Row/Column to 

in-memory logic

SRAM array

Module Block decoder

Data array 0 0…0

In-memory logic 1 Layer index
Block index

Address decoder

In-layer address

Original data 
in this pair

4

Original data

2. In data array

01010001

10110011
 ...

By multiple-layer RRAM 
crossbar logic

Processed 
data

3.  In data array

external 
processor

4.  Result read out



















NPN

P

MM

MM

1

111









• Instruction queue: store

instructions issued by external

processor.

• Instruction decoder: analyze

instructions on a first-come-first-

serve (FCFS) basis.

• Address decoder: obtain the row

and column index from the

instruction.

• SRAM array: store temporary

data such as computation results,

which are later written back to

data array. 11



Analog RRAM-crossbar

Features:

• Each RRAM denotes a multi-bit

value with different resistance.

• DACs/ADCs are designed for I/O.

• Multiple bit result can be read

directly.

Drawbacks:

• It is hard to configure an accurate

resistance of intermediate states,

causing large error.

• DACs/ADCs consumes too much

power.
Switching 

curve

Programing 

inaccuracy

12



Proposed Binary RRAM-crossbar

Features:

• Each RRAM denotes only 1 or 0.

• Use sense amplifier in each bit-

line.

• Output of each bit-line is only 1

or 0.

• Threshold of sense amplifier

𝑉𝑡ℎ,𝑗 can be configured.

Merits:

• RRAM can be configured

accurately.

• Output result can be accurate

without ADCs

 
 
 

 

    

Word line

Bit line

WLi

BLj

Rij

Ij

VWL,i

SA SA SA SA
VBL,j

Ij

Vth,j
VOut,j

Rfixed

𝑂𝑗 =  
1, 𝑖𝑓 𝑉𝑗

𝐵𝐿 ≥ 𝑉𝑡ℎ,𝑗

0, 𝑖𝑓 𝑉𝑗
𝐵𝐿 < 𝑉𝑡ℎ,𝑗

13



XIMA Matrix-Vector Multiply Accelerator

Target: matrix-vector

multiplication with binary

RRAM crossbar interface

Approach: utilize 3-step

digital RRAM crossbar

instead of analogous

crossbar

Size of RRAM crossbar is

𝑁 × 𝑁 , where 𝑁 is the

maximum possible result.

xi,1

xi,2

xi,3

xi,N

φ1,j

φ2,j

φ3,j

φN,j

φ1,j

φ2,j

φ3,j

φN,j

φ1,j

φ2,j

φ3,j

φN,j

φ1,j

φ2,j

φ3,j

φN,j

O1,0 O1,1 O1,2 O1,N-1

Overall flow

[1 1 0 1 1 1 1 1][1 1 1 1 1 0 0 1] T
 1111100000001000101

Inner product by 

digitizing

transition detection by 

XOR 

N to log(n) encoding by 

encoder

14



XIMA Matrix-Vector Multiply Accelerator I

Step 1: Digitizing
• Identical columns but with different

readout threshold 𝑉𝑡ℎ.

• Ladder-like threshold voltages 𝑉𝑡ℎ to

identify the result:

𝑉𝑡ℎ,𝑘 =
2𝑘 + 1 𝑉𝑟𝑔𝑜𝑛𝑅𝑠

2

𝑂1,𝑘 =  
1, 𝑘 ≤ 𝑠
0, 𝑘 > 𝑠

1

1

0

1

1

1

1

1

O1,0 O1,1 O1,2 O1,N-1

Identical columns





































































































71

23167

55243

64321

78632

32575

40457

42

011

11000

10000

00110

010110

01011

10011

010

10

00000

01001

01110

10100

10001

11111011

01














































𝑥 Ψ y

1 1 1 1 1 0 0 0

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Column index

N
o
r
m

a
li
z
e
d
 v

o
lt
a
g
e

 

 

Threshold voltage

Result voltage

For example, the output that corresponds to 5 is 11111000 (𝑁 = 8).

Important Property:

For the inner-product result s,

the first 𝑠 bits are 1 and the rest

(𝑁 − 𝑠) bits are 0 (𝑠 <= 𝑁).

0 1 2 3 4 5 6 7 8
00000000

10000000

11000000

11100000

11110000

11111000

11111100

11111110

11111111

Column voltage

C
o

lu
m

n
 r

e
s
u

lt

Result of 5
I/O curve

15



• The result is indicated by transition bit

XIMA Matrix-Vector Multiply Accelerator II

111110000

Fifth bit

Step 2: XOR

result 0 1 0

First bit 1 1 0

Second

bit

1 0 0

 Transition occurs when there is no current! For example, the output that

corresponds to 11111000 is 00001000

(𝑁 = 8).

• Detect the transition bit by XOR (⊕)

adjacent bits

First bit inverse + Second bit

16

O1,0

O1,1

O1,1

O1,2

O2,0

O2,1

O1,N-1

1
O2,N-1

Implemented by AND gate.



Step 3: Encoder
• Pre-configured binary in each row

• Only one row can be active due to

transition output of XOR layer

• Row-select to encode then

transition to binary

XIMA Matrix-Vector Multiply Accelerator III

Encoding by row selection

 Second step output:
• High at the transition

• low for the rest

8-3 encoder

For example, the output that corresponds to

00001000 is 101 (𝑁 = 8).

17

Step 2 output Step 3 output

10000000 001

01000000 010

00100000 011

00010000 100

00001000 101

00000100 110

00000010 111

00000001 000

Look-up table of 8-3 encoder



Extension for Real-value Multiplication

130, 85, 49,… 23 ∗ [1,1,0,… , 1]𝑇

8-bit data * 16 8-bit data * 16

• Adders are needed in

CMOS-ASIC.

• Apply 3-step binary

multiplication for the

same bit of 16 data.

• Only need 3x12-bit

adders instead of 15.

• For N-dimensional data,

reduce from (N-1) adders to

(log𝟐𝑵− 𝟏)

1

1

0

1

1st bit of 130

O1,0 O1,1 O1,2 Ali

1st bit of 85

1st bit of 49

1st bit of 23

10000010

01010101

00110001…
00010111

(130)

(85)

(49)

(23)

• Result of 1st bit:

0, 1, 1, … 1 ∗ 1,1,0, … , 1 𝑇 = 𝟏𝟏𝟎𝟏(𝟏𝟑)

1  1  0  1
1  0  1  0

0 1 1  0

0 1 1  0

result of the 1st bit 

result of the 2nd bit 

result of the 8th bit 

result of the 3rd bit 

+

inner-product result 

1  1  0  1
1  0  1  0

0 1 1  0

0 1 1  0

1st bit 

2nd bit 

8th bit 

3rd bit 

+

inner-product result 

0 1 1  18th bit 4th bit 

1  1 1  0
1  1 0  0

1  0  0  1

7th bit 

6th bit 

5th bit 

18



XIMA for Machine Learning

Working flow:

 Step 1: offline unsupervised training for Boolean first neural layer Ψ

 Step 2: configure Ψ distributedly to 3-step digitalized RRAM by stacking

 Step 3: online ASIC incremental LSM training for second neural layer

 Step 4: perform recognition tasks

Merge Merge

M
e

rge

Merge Merge

Merge Merge

M
e

rge

Merge Merge

M
e

rge

Merge Merge

M
e

rge

M
erge

Matrix-vector 
product

Distributed submatrix-
subvector multiplication

Distributed intermediate 
results merge

H-tree-like 
distribution network

Sub- Input vector configurations 
(blue crossbars)

Sub- weight matrix 
configurations (red crossbars)

Layer-to-layer propagation 
of neural network

…
Benefits:

 1. distributed in-memory computing  high throughput

 2. RRAM decomposition  high fabrication feasibility

 3. Boolean Ψ optimization  crossbar compatibility with high performance

 4. non-volatile RRAM  low static power

CMOS comparators/
read-write circuits

Input data

Digitalizing

XOR

Encoding

CMOS comparators/
read-write circuits

Adder-merger

16x16 matrix-
multiplication

16x16 matrix-
multiplication

19



Compare to CMOS-ASIC
• 2.86x faster

• 154x more energy efficient

• 100x smaller area

Compare to analog RRAM crossbar
• Almost the same computational time

• 10x worse energy efficient

• 160x smaller area

Variability Study

Experimental Setup: 328x356 * 356x64 Boolean Matrix

20



Scalability Study

• We compare the performance

among CMOS-ASIC design, non-

distributed RRAM-crossbar design,

and distributed RRAM-crossbar

design.

• X-axis is the original image

dimension (number of pixels).

• Distributed RRAM-crossbar is the

best among three implementations.

• The EDP improvement compared to

CMOS-ASIC reduces from 514x to

196x with dimension increasing from

356 to 864, but still considerate.

21



Embedding configuration Energy (nJ) Leakage (uW) Area (um2)

CMOS ASIC 5.6700 59 86650

RRAM crossbar 0.3324 - 54

CMOS ASIC 6.3504 66 97050

RRAM crossbar 0.3741 - 60

CMOS ASIC 6.8040 71 103980

RRAM crossbar 0.3993 - 65

CMOS ASIC 7.7112 81 117850

RRAM crossbar 0.4558 - 74

CMOS ASIC 8.8452 114 135180

RRAM crossbar 0.5228 - 84

• Hardware performance

• 15x faster (due to one cycle)

• 17x more energy efficient

with leakage elimination

• More than 100x smaller area

• Conclusion: the RRAM crossbar

with proposed Boolean

optimization overcomes the

power-performance dilemma and

enables both

• high performance first layer

dimension reduction/feature

extraction (less info loss),

• Power- and area-efficient

hardware.

Face-recognition Simulation Results

22



Thank You!

http://www.ntucmosetgp.net

Email: haoyu@ntu.edu.sg 

Skype: hao.yu.ntu

23


