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Feature Extraction Approaches
— Hand crafted features such as HoG and SIFT
— Automated features extraction using Convolutional Neural Networks
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CNN Based Feature Extraction

— Very effective in different
vision tasks
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— Very high computational
complexity

[Krizhevsky et al. 2012]
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Dataset: ImageNet 2012 — Top 5 Error [Simonyan 2015]
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Higher Depth

Higher Precision

Higher Execution Time

Higher Power Consumption

Mobile devices have to offload the
computation to a cloud.




e High power e |nitial Cost e Complexity of
consumption e Reusability design

e Inflexibility e Complexity of
(Single and design
Floating point
only)

An energy efficient and fast implementation of DCNNs is very beneficial for mobile devices. This can be
achieved by hardware based acceleration of DCNNs.
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Convolutional Layers.

Over 90% of

computation time.
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Fully Connected Layers.
They can extract local
and global features.
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[Krizhevsky 2012]
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 Center element of kernel is
placed on each pixel of Input
Feature Map (IFM)

e Convolution Result:

4x0)+(O0x0)+(0x0)+((0x0)+(0x1)
+(O0x1)+(0x0)+(0Ox1)+(—2%x4)=-8
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 Each Output Feature Map
(OFM) is the result of a 3D
convolution of the Input

From the

Feature Map (IFM) with a Frevesme

Input Feature Maps

Output
Feature Map A

Kernel A
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Kernel B

OFM, = 3DConv(IFM, Kernel,)

vie{0,1,..,255}:
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Output Feature Maps

OFM; = 3DConv (IFM, Kernel;)



* |Inter Layer Parallelism

256
* Inter Output Parallelism 2 Feature Mg
— Compute different OFMs in ‘E,_, ) 55 Tothe next layer
parallel e N .
* |Inter Kernel Parallelism BDCO,,‘,O,M:"S</ 5 E
— Compute one OFM in parallel N % \ é
* Intra Kernel Parallelism i = 3

Output Feature Maps

— Compute one convolution in
parallel

Design Space Exploration of FPGA-Based Deep Convolutional Neural Networks 8



* DCNNs

— Computation bound
— Communication bound

 Computation — Communication balance
— Memory model
— Computation model

| Balancing Computation and Communication |

Improving Computation Improving Communication
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To Next Layer
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PCE

° I |

Intra Kernel Parallelism —

— PCE: Parallel Convolution Engine S

— Here the number of parallel : :

multiplications (T}) is 4. | (Weights] $

* Inter Kernel Parallelism (gt

— Convolve different IFMs -
* Inter Output Parallelism (Weights)

- PCES With diffe re nt Weights Inther‘neI Inter Kernel Parallelism
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* Number of cycles in tiled model: [P
Cycles =
#Rounds X #0perations per round D T,

e #Rounds = [%} X [%} X ¢« TEJ X [TEJ |

T, T,

Tl'Tj-

+ P)

 #O0ps per round = (T, T, X [

Tk
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* Computation to communication ratio:
Total Computation
CTC =

"~ Total Communication
B 2XMXNXRXCXKXK

OFM

Execution Pipeline

Aip X IBin T Aoy X ,Bout + awght X ﬁwght
* Weight’s buffer size
ﬂwghtszXTnXTix’I}'

 Number of loads and stores of weights
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 Goal * AlexNet CONV1:
— Maximize throughput and CTC

e Constraints
— Memory bandwidth g o B :
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q;). DynamicT,,, T,, and T, DynamicT,, and T,, FixedT,,,T,, and T,
8 T, T, T, Cycles | GFLOPS | T, T, T, Cycles | GFLOPS | T, T, T, Cycles | GFLOPS
1 16 3 10 | 17975 | 86 48 3 3 | 124025 | 85 16 3 9 | 127850 | 83
2 4 24 5 | 233280 | 96 10 16 3 | 255879 | 87 16 3 9 | 279936 | 80
3 15 32 1 79092 | 95 16 10 3 79092 | 95 16 3 9 87204 | 86
4 15 32 1 118638 | 95 32 5 3 118638 | 95 16 3 9 120792 | 86
5 10 48 1 7992 | 95 10 16 3 79092 | 95 16 3 9 | ses28 | 86
Sum 628077 656726 755642

Towards a static solution
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Normalized Performance

Dynamic Tm, Tnand Tk Dynamic Tm and Tn Fixed Tm, Tn and Tk

Towards a static solution

— Dynamic re-configurability has a minimal effect on the performance.
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Peoman2013) | (Catamb2010] | [chakrodhar 2010 | (znamgo0ts) | PTOPOSed SOl
Precision Fixed Fixed Fixed 32bits float 32bits float
Frequency 150 MHz 125 MHz 200 MHz 100 MHz 100 MHz
FPGA Chip VLX240T SX240T SX240T VX485T VX485T
Performance 17 GOPs 7.0 GOPs 16 GOPs 61.62 GFLOPs 84.2 GFLOPs
GOPs/Slice 4.5E-04 1.9E-04 4.3E-04 8.12E-04 11.09E-04
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Proposed Solution

N

FPGA with 2X larger area and BW
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* Template architecture for convolution acceleration

* Analytically characterize performance and memory
requirements

* Expand the design space to find best architecture
— Parallel Convolution Engines
— Tiling scheme expanded to kernel level

* Simulation shows speedup of 1.4X ... 1.9X over existing
accelerators
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Thank you!
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