B EERBEAR Pl N
= THE HONG KONG Yans\ Y }ﬁ *d 4
ll)_w UNIVERSITY OF SCIENCE %% - A A ‘“')t T
AND TECHNOLOGY Lttty SHANGHAI JIAO TONG UNIVERSITY

LRADNN: High-Throughput and Energy-
Efficient Deep Neural Network
Accelerator using Low Rank
Approximation

Jingyang Zhul, Zhiliang Qian?, and Chi-Ying Tsui?!

1 The Hong Kong University of Science and Technology, Hong Kong
2 Shanghai Jiao Tong University, Shanghai, China

IEEE/ACM ASP-DAC 2016, 28th Jan., 2016, Macao

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
 LRADNN: hardware architecture

* Experiment results

* Conclusion

Deep neural network (DNN) and
nardware acceleration

o Layer_wise Organization with Input 1°*Hidden 2" Hidden Output
. . . Layer | Layer | Layer | Layer
hierarchical feature extractions - - -

Deep neural network (DNN) and
nardware acceleration

_ N , Google brain
* Layer-wise organization with g.. |

hierarchical feature extractions

Machine |
7 Puiyoel,|

* Hardware acceleration
e CPU clusters: Google brain
* GPU clusters: AlexNet
e ASIC: IBM TrueNorth
AlexNet

 auiyoey,

m
Q
=
=
o
(2 I
b

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
 LRADNN: hardware architecture

* Experiment results

* Conclusion

Related work

* DianNao: a general accelerator for DNN
* Large energy consumption in memory access

* AXNN: energy-efficient accelerator by
approximating resilient neurons

* Only reduce power in datapath!
y] p i P AxNN datapath
Energy consumption in DianNao

B nBin + NBout I sB M Memory M Logic

100 e
75
50
25
o

o\g’ o\f"

% Total energy

A -] Y (A % B =)
0\3.650\}.5‘500\4“ O o o™ 0‘&‘

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
 LRADNN: hardware architecture

* Experiment results

* Conclusion

Motivation: sparsity in DNN

* Intrinsic sparsity in DNN to avoid overfitting / better
feature extractions

» Sparsity: proportion of inactive neurons (activation = 0)

Sparsity in DNN targeted for MNIST

95.00%
94.00%

93.00%
92.00%
91.00%
90.00%
89.00%
88.00%
87.00%
86.00%

1st hidden layer 2nd hidden layer 3rd hidden layer 4th hidden layer

Motivation: sparsity in DNN

* Intrinsic sparsity in DNN to avoid overfitting / better
feature extractions

e Sparsity: proportion of inactive neurons (activation = 0)

 Conventional co Putation Regardless of the
activeness Of neurons

a*D = zwa) D) et

* Arithmetic ops / neuron: s; mults, s; — 1 adds, 1
nonlinear

* Memory accesses / neuron: 2s; (weights & acts)

Motivation: bypass unnecessary
operations

 Dynamically bypass the inactive neurons
‘ Inactive Neuron ‘ Active Neuron

Layer |

Layer |-1
* Dedicated predictor for the activeness of neurons
* Simple: less arithmetic operations involved
e Accurate: small performance degradation

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
* LRADNN: hardware architecture

* Experiment results

* Conclusion

Low rank approximation (LRA)
oredictor [1.

* Approximation for synaptic weights W

min |W — W |z
w _
S.t. rank(W) =7

where r is a hyper-parameter controlling the
prediction accuracy vs. computation complexity

e A nice closed form solutlon based on SVD

TT~a
Calculated weights

Layer |-1

[1] Davis A, Arel I. Low-Rank Approximations for Conditional Feedforward Computation in Deep Neural Networks[J]. arXiv
preprint arXiv:1312.4461, 2013.

Feedforward pass with LRA

® Algorithm 1 DNN feed-forward with LRA

I: procedure FEED-FORWARD(aM), {W(D}]

2 for/:=1to L —2 do > Over all hidden layers
3 y+1) = OO >V calculation stage
4 pltD) = By (+1) > U calculation stage
5: for i :=1to s;,; do > W calculation stage
6

7

8

9

Ll)

£3+1) > () then > Compute active neurons

Z’,gH_l) Z HT(I) U)

if p
else r> Gate inactive neurons
z;ng) =0
10: a+1) = g(z(+D) > ReLU transformation
11: al) = g(WE=D L=y No LRA for final output
* Take LRA into offline training (backpropagation) to
improve the performance

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
* LRADNN: hardware architecture

* Experiment results

* Conclusion

'RADNN: hardware architecture
for LRA predictor

* Top view of the architecture: 5-stage pipeline
* Address calculation -

e Multiplication
* Addition
* Nonlinear operation and write back A

Addre§s | Memory |I\/Iultlpller1I Adder tree : Nonl.lnear and
calculation fetch array write back

[T] [T]
44’

—

™ Il l;ﬂ;(;::;: T emory
controller
calculation bank

I
—
[

I
|
|
I
|
I
Activation I Activation

I

[

|

I
|

|

A e

%

A register
bank

address
calculation

EEEEEEEREEY

! !

| |

! !

| |

| |

| |

! !

| |

| |

| |

| |

| |
— L

| |

I
I
I
I
I
I
I
I
I
I
I
I
|
|

Status controller

3 calculation statuses
* VV computation
* U computation
* W computation

* Hidden layer
e Qutput layer (no nonlinear
operation)
e Data dependency (delay 3
CCs)

pl=yiyviiz() ADDR | MEM | MUL

M

al*U=LRA(p(, ah) ADDR | MEM

Address calculation: memory
organization

* Memory word width: parallelism of the accelerator

)

|

. _ One word: parallelism of the accelerator
* For a specified weight W;;

word lines for an ‘ ‘ .
« Column block jy i
output neuron

Memory access: activation
register banks

* Two physical register banks are interleaved to two logical
registers: input and output activations

~—
>

Register bank 0 - Input act

L—
P~

>
Y
>

Register bank 1 —» Output act

|

* |[nput activations

Input activations _
register bank Dispatch

I_|: selection control

+0 ¢ Jui

>

1

Dispatch mux array

—

—

\

(28e31s 17NN 031) 1no e1ep Xd0|g
A

Memory access: activation
register banks (cont.)

* Output activations
e Extra register for LRA
Output
scheme (S 5%) actiSaEc)ilcj:)ns
* Tmpl: tmpl = register bank

HOMO

e Tmp2: tmp2 = v

U(l)tmpl : Read out To WB stage (for
%\ /activations — accumulation)

e Predictor: p® =
tmp2 > 0

Tmpl reg Output act Predictor reg

Physical location
Size (depth x width) rank x FP width # acts x FP width #actsx 1

Computational stages

 Parallel multiplication

* p multipliers, determining the parallelism of the
accelerator # adders @ level 1: p

‘%ﬂ@? %%

* Merging operation
* Adder tree

* Nonlinear operation
* RelLU

o
N
o]0]
o
<
)
o
)
()
A 4

Active neurons search: behavior
level

* Priority encoder based search

Algorithm 2 Active neurons search

procedure ACTIVENEURONSEARCH(i, p{"))
for searchld :=7 + 1 to i + SCAN_WINDOW __SIZE do
itp) ——1then

searchld

Priority
— encoder

break search
if searchld > 7 + SCAN_WINDOW _SIZE then Search

=

nextActiveld = 7 + SCAN_WINDOW _SIZE + 1 miss
return nextActiveld

1:
2
3
4: nextActiveld = searchld
5
6
7

e Search miss penalty: 1 CC

Active neurons search: hardware
level

* Priority encoder based search
* Higher priority assigned to LSB

e Decoder

* One hot to binary decoder
E Predictor

<€4— Current neuron i —

Fo 8o

:1 Fixed &
> priority ©2
arbiter

Scanning window s
I

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
 LRADNN: hardware architecture

* Experiment results

* Conclusion

Simulation setup

* Behavior level simulation on MATLAB
e Offline training
* Fixed point simulation

* RTL implementation using Verilog
e Technology node: TSMC 65nm LP standard cell
* Memory model: HP CACTI 6.5

* Comparison of behavior, pre-synthesis and post-
synthesis simulations

* Power evaluation based on the post-synthesis
simulation (extracted switching activities)

* 3 real benchmarks are tested on LRADNN: MNIST,
Caltech101, and SVHN

Summary of the implementation

Micro-architecture parameters

multipliers (parallelism) 32
Depth of the activation register bank 1024
Layer index width (max layer no.) 3
Fixed point for the internal data path Q7.12
Fixed point for W memory Q2.11
Fixed point for U, V. memory Q5.8

W memory size 3.5MB
U, V. memory size 448KB
Scanning window size 16

V calculation registers (max rank) 128

Area and timing results

* Memory dominant for area and timing

| LRADNN (direct) LRADNN

Total area (mm?2) 51.94 64.18
Critical path (ns) 8.94 9.03

* Area overhead caused by U, V. memory
448KB x 2/3.5MB = 25%

* Timing overhead caused by extra U, V, and W
memory data MUX selection (~ 1% increase)

Training results on real
applications

* Prediction loss: test error rate for LRA feedforward — test
error rate for plain feedforward

Caltech 101 MNIST SVHN
silhouettes

784-1000- 1023-1000-700-
600-400-10 400-150-10

H# connections 0.90M 1.63M 2.06M
Rank 50 50-35-25 100-70-50-25

Prediction loss
(fixed point)

Architecture 784-1023-101

0.07% -0.93%

Theoretical lower bounds for
accelerators

* Number of cycles
synptic connections in DNN Y721 5,44 (1 + 5)

parallelism parallelism

* Power consumption (only consider memory access

power)
Err EMEM X Dgyc

Lpp Tcyc X Neyc
E.r: energy consumption during feedforward
t..: elapsed time for feedforward
n..: humber of ideal cycles
Eviem: memory read energy per access

Timing and power results on real
applications

* Power consumption: average post-synthesis
simulations on the first 10 testing samples
Number of cycles
T deal | LRADNN (direct) | LRADNN
Caltech 101 silhouettes 28327 29840 23141
MNIST 50938 52971 30105
SVHN 64586 66245 49371

Power consumption (mW) / Energy consumption (m)J)
e deal | LRADNN (irect) | LRaDNN
Caltech 101 silhouettes 517.76 /0.15 551.61/0.16 487.88 /0.11
MNIST 517.76 / 0.26 557.98 / 0.30 459.73/0.14
SVHN 517.76 / 0.33 561.42 / 0.37 438.37 /0.22

Scalability for high parallelism of
LRADNN

* Not fully utilize the hardware (multipliers) due to

the memory alignment
U mXn

m X p X [n/p]

Hardware utilization under different parallelsims
1.2

1
0.8
0.6
0.4
0.2

0

Caltech 101 silhouettes MNIST SVHN
H16 m32 W64 128 W 256 m512

Outline

* Introduction

* Related work

* Motivation of LRADNN

* Low rank approximation (LRA) predictor
 LRADNN: hardware architecture

* Experiment results

* Conclusion

Conclusion

* A general hardware accelerator LRADNN for DNN is
proposed

* A time and power-saving accelerator based on LRA
* 31% ~ 53% energy reduction
* 22% ~ 43% throughput increase

* A better scheme compared to the existing work
* A better scheme compared to the existing work

Prediction loss 0.5% <0.1%
Energy improvement (w/o memory) 1.14x — 1.92x 1.18x—1.61x
Energy improvement (w/ memory) N.A. 1.45x — 2.13x

* Thank you

*Q&A

