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Wearout/Aging L ST Y
Front-end of line: BTI, HCI, etc.
Back-end of line: EM
A Cross-layer Issue
Both Reversible and Irreversible part

BTI, EM, etc:

Irreversible
. Wearout

Reversible|
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Irreversible Component

Biased Temperature Instability (BTI) —
Reversible wearout

BUT still with irreversible component
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Overview

ne boundary is “soft”
ne boundary can be “controlled” & shifted
ne Irreversible part can be FULLY avoided

Reversible!{ ‘Irreversible

Wearout |\ | Wearout

Boundary? Boundary
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‘ Outline

= Overview

= Mechanisms

= Experiments

= Proposed Solution
= Results

= Implementations
= Conclusion




Recovery mechanism (1/2)
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Trapping — Charge carriers overcome a
potential barrier

Detrapping — Trapped charge carriers with a
certain probability to escape




Recovery mechanism (2/2)
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~ kT (0.026eV) at
room temperature
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The probability is high if their energy is higher
and the trap energy barrier is lower, and vice-
versa.




Fast traps vs. Slow traps

Fast traps — Lower trap energy barrier — Easier to
escape — Fast Recovery — Reversible wearout

Slow traps — Higher trap energy barrier — Very difficult
to escape — Slow/No Recovery — Irreversible wearout
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Temperature impact

0.8
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Temperature can skew the distribution
Voltage also affects the detrapping via the electrical

field




‘ Outline

= Motivation

s Mechanisms

= Experiments

m Proposed Solution
m Results

m Implementations
m Conclusion

10



| Experimental Setup

= Accelerated testing methodology
= 40nm FPGA chips

= Ring Oscillator based test structure
= Measure the oscillation frequency degradation/increase
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Test configuration*

Test setup

* The same test configuration used in [X. Guo et al., DAC 14] 11



Accelerated & Active Recovery

= Natural recovery — Passive recovery
= Negative Voltage — Activate Recovery

= High Temperature — Accelerated Recovery
19.15
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Irreversible Wearout
from Accelerated Recovery

Irreversible Wearout
from Natural Recovery
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The boundary is not fixed and is controllable! | 12




Irreversible Wearout During Accelerated & Active Recovery

Recovery saturates in each cycle

Irreversible wearout accumulates
19.16

IR: Irrevermble Wearout
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Can we further “remove” or “avoid ”’all IRs?
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‘ Outline

Proposed Solution

14



Sequentiality of reversible and irreversible wearout

Irreversible wearout follows reversible wearout
Accelerated Active Recovery saturates

Frequency (MHz)

18.98

v 110°C and High vdd (1.26V)

® 110°C and Nominal Vdd (1.20V)|-

‘
v
Y v ..

0

100

Wearout Time (min)

200 300

19.15
A Accelerated Stress for 6 hours
19.14% ~~ 4 Accelerated Recovery for 6 hours| -
LY
~19.13 4 _
r i Reversible PI*‘H' bk dehd
s ) Wearout
=19.12 & !
9 #
v i
v A I
5 19.11 Recovered
o &
v 1 ' Wearout
L
19.1 ‘)x“ J
Ay ]
Y Y
19.09 MQ !
AN oLy

N

400 19.08
/y

100 200 300 400 500 600 700

Time (min)

What if we apply the accelerated recovery earlier?
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Sleep when getting tired

Frequency dependency of wearout and recovery
For 1hr. vs. 1hr. case, wearout and accelerated

| |——4hrs vs. 4hrs
——6hrs vs. 6hrs
| |——2hrs vs. 2hrs
——1hr vs. 1hr

1000 2000 3000 2040 "0 100 200 300 400 500 600 700
Time (min) SS Time (min)

Different “circadian rhythms”

1 hr. Accelerated Wearout <~ 31 hrs. Normal Operation
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Sleep when getting tired

Frequency dependency of wearout and recovery

For 1hr. vs. 1hr. case, wearout and accelerated
recovery compensate completely!

i
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Irreversible wearout for the first 6 cycles

1 hr. Accelerated Wearout <~ 31 hrs. Normal Operation
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What does this mean?

Irreversible Wearout is completely avoided!

Operation time < 31 hours, and then followed
oy = 1 hour of Accelerated Active Recovery

Reduction of Design Margin (Guardband)

Higher Average Performance — Higher

evels of performance and power efficiency
most of the lifetime
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‘ Outline

= Motivation

s Mechanisms
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= Results
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s Conclusion
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‘ Reduction of Design Margin

= >60X Reduction for all cases *

= Almost the same margin for any lifetime constraint
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[Y. Cao, et al. TCAD ’'14] and [V. Huard, et al. Springer '15]




Performance Improvement

The average performance is close to the fresh during the
whole lifetime

The average performance doesn’t scale with the
Increase of the lifetime constraint

Bl No recovery
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‘ Outline

= Implementations
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Fresh

Frequency

Negative “Turbo Boost”

Schedule Accelerated Recovery Proactively

Negative
XX \y

“Turbo-boost”
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Right balance

Mobile devices: Human Circadian Rhythms

Server applications: Utilize core redundancy and
employ novel scheduling

Accelerated Irreversible
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‘The big picture

Sleep Core Active Core
o«
/" Heat Flow

Apply to
sleep cores

A
»

Sensor
outputs

SEensors

Core I

Sensor_, >
outputs Real-time
Scheduler

To cores

Applications =
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Conclusion

Irreversible vs. Reversible Wearout

Frequency dependency
Sleep-when-getting-tired Strategy

Reduce guardband & Maintain high performance
Negative “Turbo-boost”

Future Work: Optimized scheduling method that
considers power, thermal and wearout budgets

together
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Thank you!

Q& A

This work is funded by NSF, SRC and C-FAR.
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Accelerated Self-Healing

Active Recovery:

Passive Recovery Activate the recovery

Vsg = 0, room temperature

Vsg = negative
room temperature
~_

Accelerated Recovery

Accelerated & Active Recovery

Vsg = 'negative
high temperature
_

Vsg = 0, high temperature

Accelerated Self-Healing
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The distribution of kinetic energies

I 3/ E
E)= AX(— E xXexp(——
fe(E) = Ax(=)" < E xexp-—)
Majority of the electrons are at low energy In
meV range

The center energy of even the lowest energy
of the trap is in order of several KT
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Measured Average performance improvement
(IMP) for 1 day and 2 days

o Fresh -@-2 Days| [MP:Average Performance Improvement
1 i -@-1 Day Py
= )
N -
= 19.05 A
= 1
3‘ S
= o
Y 19 o R
g- ﬁ_. 11 h
@ =11
T 18.95 Ty
S "1g
1
C 189 -
>
< :
18.85 ¥
vr vs. 07




Test cases

All start from fresh
Total test time: 3 days

TABLE I Summary of periodic accelerated rejuvenation test cases

| Chip  Cycle stress Cycle accelerated # of
Case Name ) ] . |
No. time recovery time cycles
6 hrs vs. 6 hrs 1 6 hours 6 hours 6
4 hrs vs. 4 hrs 2 4 hours 4 hours 0
2 hrs vs. 2 hrs 3 2 hours 2 hours I8
I hrvs. 1 hr 4 1 hours I hours 32
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