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Fully Charged Ranges of EV

« Electric vehicles are emerging with their great advantages, but EV

drivers suffer from the short driving range

« EV have 5X shorter fully charged ranges than that of ICEV (Internal
Combustion Engine Vehicles)
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Range Anxiety

« Range anxiety is the fear that a vehicle may not have sufficient energy
to reach its destination

« The range anxiety comes from the uncertainty of the remaining range

« Modern fuel gauges show the remaining range but it's only based on
the driving history (past fuel consumption)
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Range Anxiety in EV

« Most of the electric vehicle drivers always suffer from the range anxiety
 Limited EV charging facilities, long charging time

« Running out of battery while driving gives the same inconvenience
as the vehicle breakdown
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Range Anxiety in EV

« The statistics says that most of the EV drivers attempt only 70% of the
estimated driving range with confidence

The range anxiety in EV make the effective driving range of the EV
even shorter

Efforts to mitigate range anxiety

« More EV charging facility, higher density batteries, fast charging,
and range extender

« Above solutions are time consuming or high cost
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Paper Contribution

« In this paper, we provide accurate range estimation

« It mitigates the uncertainty of the driving range alleviates the range
anxiety

« It restores the reserved range and extend the effective driving range
« Same effect of extended range without increasing the battery capacity
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RR Estimation Framework

« The general remaining range framework can be simplified as following
figure
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History Based RR

« History based remaining range estimation assumes the future power
consumption is the same as the past power consumption
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Model Based RR

« Model based remaining range estimation is naturally more accurate
than the history based estimation
« There are some works about the model based range estimation

« They focused on predicting the future driving profile, but left the power
model simplified

SoC: 10%

History based RR: Can’t Reach destination
Model based RR: Can reach destination
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Paper Contribution

« In this paper, we focus on an accurate EV power model to achieve an
accurate remaining range estimation
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Proposed Range Estimation

We start with a basic assumption that the future driving profile is given
EV Power Model

Dynamics Motor

Remaining Range




Vehicle Dynamics Model

« Widely used vehicle power consumption model

denamics — F% = Fv
= (Fr+ Fa+ Fg+ Fr + Fp)v
~ (Fr + Fg + Fr)v

~ (a + Bsinf + ya)mu,

Fr(rolling resistance) ~ Cp.,. W

Fg(gravitational resistance) ~ W sin 0

Fi(inertial resistance) ~ ma

1
Fs(aerodynamic resistance) ~ 5 pCqAv?
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Proposed Advanced Dynamics Model

« Motor efficiency actually differs dynamically according to the operating
status
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Proposed Hybrid Power Model

« Advanced dynamics model ignores the drivetrain and ancillary losses in

the estimation
o Measured data

« A pilot experiment to verify the > | -
adequacy of the advanced o
dynamics model

Finally, we propose the hybrid
power model including the
quadratic term from empirical
data
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Regenerative braking model

« One of the most commonly used energy harvesting methods in the EV
is regenerative braking

. The regenerative braking ~ _ *
comes from the 2
electromagnetic induction &
g
Pinduction X W %‘
B
. &
 Regenerative power can be 4 ; ; ; ;
modeled as follows 0 ) 4 6 8 10

Pregen = 0v — € Velocity (m/s)

= (460.53 J/m)v — (333.92 J/s)
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Power Models

Vehicle dynamics model

Pyenicle = (a + Bsinf + ya)mu
Advanced dynamics model

T = P/v = (a+ Bsinf + ya)m

Pudvanced = Tv + Co + Cyv + CoT?
Hybrid power model

T = P/v=(a+ pBsinf +~vya)m
Phybria = Tv + Co + Crv + Cav® + C3T
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Specification of the target vehicle

« We use a light-weight custom EV to verify the accuracy of power
modeling and remaining range estimation

« Specification
« Curb weight: 481 kg
¢ Maximum velocity: 35 km/h
« 76.8V, 48 Ah LiFePO4 battery pack
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Data logging

« We chose a regression based approach for the modeling

« For the model fidelity, we collect 6000s of driving data from various
routes
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Power consumption model

Vehicle dynamics model
T = (a+ Bsinf 4+ va)m,
denamics =1

a = 0.59,08 =12.63,v = 1.46.
Advanced vehicle dynamics model

Padvanced =Tv + C(O + Clv + CQTza
a=0.33,6=10.70,v = 1.09,
Cy = 5.28,Cy = 118.55, Cy = 0.0017.
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Power consumption model

Vehicle dynamics model
T = (a+ Bsinf 4+ va)m,
denamics =1

a = 0.59,08 =12.63,v = 1.46.
Hybrid power model

Phybria = Tv + Co + Crv + Cov® + C3Q7,
a=0.328=10.11,v = 1.08,
Co = 5.28,C4 = 7.39,Cy = 20.62, Cs = 0.0019.
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Model validation result

« Hybrid power model yield only 3.78 % error
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Test bench drives

« We perform 6 test bench drives for the remaining range estimation
« Each drives were performed in different driving manner

Drive C

Drives B, E

Drive A \

Drive F /

Drive D
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Eemammg range esllma!lon

. Measured || Hybrid = Advncaed | Dynamics
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Remaining range estimation

e Drives Aand F

« Speed range: bellow 11.5 km/h

« Degree range from -0.6° to 0.9°
Hybrid Advncaed Dynamics

-15

-22.5
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Remaining range estimation

e Drives Aand F

e Hybrid = Advanced === Measured
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Remaining range estimation

-15

-22.5

Drives C and D
Speed range: 5 km/h to 32 km/h

Degree range: -0.6° to 0.85°

Hybrid

Advncaed

Dynamics
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Remaining range estimation

e Drives Cand D
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Remaining range estimation

e Closer look at drives C and D
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Conclusions

« We achieve higher remaining range accuracy

« The absolute average errors for hybrid power model, advanced
dynamics model, and vehicle dynamics model are 2.52%b, 6.85%,
9.33% respectively

« The hybrid power model shows increased estimation accuracy not only
in the total remaining range, but also in the instantaneous power
estimation
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Electric conversion
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High speed custom EV
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