AGARSoC: Automated Test
and Coverage-Model
Generation for Verification
of Accelerator-Rich SoCs

Biruk Mammo, Doowon Lee (Speaker), Harrison Davis,
Yijun Hou, and Valeria Bertacco

Dept. of Electrical Engineering and Computer Science
University of Michigan

ASIA SOUTH PACIFIC

e [T

AUTOMATION
CONFERENCE




Accelerator-Rich System on Chip

Intel Atom x5 and x7 Processor Platform (Cherry Trail)

DDR3

¢

WiF

audio

-
memory graphic security
controller & media J processor

wireless : image
o multi-cores & caches
connectivity processor

USB 2.0

eMMC

controller UART

PCle
controller

USB3O

ye s | 2c | s J .
J

~
display L,
controller

sea of accelerators

screen

camera

Sensors

2/ 21



SoClIntegration

1. Buy a collection of IPs verified independent

I
2. Integrate IPs to create an SoC b
3. Verify the integrated SoC
cores & caches memory V4
cores & caches , graphics
l & media
‘ security ! Al /

lercc . ~S,0 _y1ip network)

/
H wireless |
-1 P-YJ graphlcs iMmana B oar\jrlty

Interconnect (bus, on-chip network)

3/21



Interactions among Accelerators

SoC design

memory display

graphlcs
& media

wireless security

GOAL: identify interactionsthat are likely to happen &
gear verification effort towards them

4/ 21



AGARSoC Overview

= Automated Test and Coverage-Model Generation
for Verification of Accelerator-Rich SoC

i high-level environment A

software being
developed for SoC
gl E SV approximates
model RTL behavior

\_ J

traditional >

verification environment |
verification
siin 2
=]
model
\ J

@ AGARSoC approach

I:> automated
analysis

=

=

S

prioritized
generation

5/21



Outline

= Introduction
= AGARSOC: accelerator-rich SoCverification

/m emory trace\ ( abstract ) [ test and )
analysis representation CO\gl:jeernaegr%-tToond el
oIy ]
W 1N
100 B
N J L yaul | | 'S

= Experimental evaluation

= Conclusion
6/ 21



00101010
01010101010
000011101101

Accelerator Execution Model \:s:

core 1 core 2 core N-1§ coreN memory
L1 he | L1 cache [l |1 cache | L1 cache

AW m A nory
LY coche L2 cache ' o itroller
YR y A

Tnyi-spee 1INE . - v dect

wa > ~N

scratchpad scra“.npad memory-mapped
accelerator 1 M accelerator M configuration

registers
)

All units communicate via memory operations

Task execution sequence:

completion

task setup = data fetching = result writing => otification

7121



00101010
01010101010
000011101101

Memory Trace Analysis i

core 1 core 2 memory
L1 caa.» | L1 cache [l L1 cache § L1 cache

1. 0ry
~ontroller

access pattern

. A INTF i C i
config pattern 7177 = 23 accelerator execution pattern

h t _hpad .
el el - config + access patterns
accelerator 1 accelerator M

) . \ registers )
cores accelerators . .
memaory ‘ i
trace ] ’{ idas“I}
example ’ -
| accelerator execution classes
_—"|=distinct execution patterns
— @ i
dass 2 .
L time ) L L) 8/21




e
Accelerator Interaction ScenariosK‘

* |[nteractions among execution classes
= Execution classes =distinct accelerator patterns

= Two types of interactions

synchronized
observed

1. Concurrent 2. Sequential <
Crypto Image Crypto Image

D ——

———————

i time i time
on-chip network delay; state of on-chip network;
memory contention memory status after A1 affects A2

9/21



e
Abstraction Example K&

accelerator tasks

threads of execution p A . We would like to extract:
p N - GPU Crypto Image 1.3(ecut|oncglasses

o g . © e
; ’ 2. concurrent scenarios

@O
OO

. | ‘ 3. sequential scenarios
7 T e o0 O
timei E i E * Q ‘ ‘

____O__________’

10/ 21



¢
Inferring Unobserved Order K&

accelerator tasks

threads of execution - - N

p AL - GPU Crypto Image 1.3(ecut|oncglasses

= : = ’ 2.concurrent scenarios

@O
OO

3. sequential scenarios

@ O O
© @ @

. Inferred
O (unobserved)

11/ 21



' M
Test Generation B

= Multi-threaded, multi-phase test
= Multiple threads - concurrent execution scenarios
= Multiple phases — sequential execution scenarios

= Minimal schedule covering all concurrent and
sequential scenarios

= Test-generation configurations

= What (1) execution classes, (2) concurrent scenarios,
and (3) sequential scenarios should be selected?

= Should inferred sequential scenarios be included?

12/ 21



1700
Test Generation Example I.I.I

| B
execution classes Test-generation setting:
‘ O “Cover all concurrent and sequential scenarios”
. )
O ® [ generated test N\ [ alternative
concurrent scenarios TO T1 T0 T1
@O phasel @ O O
QO barrier
sequential scenarios phase 2 Q O ‘ O
O Q . . Y,
8 ® O barrier (1st sequential
phase 3 ‘ scenario missed)
. barrier
O phase4 )

- Y,

13/ 21



Coverage Report L

= Automatically generated along with test LR

Classes
Name Countj Goal |Seen % of goal
GPU.1QR 7

Crypto.1 § 6
Crypto.2 § 6
Image.1 {5

How many times does
the generated test
cover this scenario? |nt

Does the generated test
include this scenario?

CTypPLo. I

Crypto.1 Imae.2

| #in generated test
# in original tests

33.3

How many times do [(S¢
the original tests |unt
cover this scenario?

GPU.1 GPU.1§ 1
Image.1 GPU.18 0

25.0
14/ 21



Outline

Introduction
AGARSo0C: accelerator-rich SoC verification

Experimental evaluation

= Experimental setup
= Runtime

= Compaction rate

Conclusion

15/ 21



Experimental Setup

Two SoCs modeled (SystemC and RTL)

SystemCmodel built on SoCLib framework*
= 3 cores (ARMv6k), 3 memory modules

= 3 accelerators (QPSK modulator, demodulator, FIR filter)
= 1 shared bus

RTL model built on Xilinx Vivado® design suite
= 3 cores (MicroBlaze), 1 shared memory

= 6 accelerators (FIRfilter, CIC filter, CORDIC module,
convolutional encoder, FFT module, complex multiplier)

= 2 AXl interconnects
Custom test-program suites

* http://lwww.soclib.fr/trac/dev 16/ 21



Test Suites
= 5 groups of test programs for SystemC model

m # ot programs

sequential accesses with locks

2 9 sequential accesses without locks
3 9 concurrent accesses with locks

4 9 concurrent accesses without locks
5 18 combinations of the four above

= 5 groups of test programs for RTL model

m # ot prograns

no synchronization

2 8 lock, single-accelerator invocation
3 5 lock, multi-accelerator invocation
4 7 barrier, redundant computations
5 13 semaphore synchronization

17/ 21



Runtime of Generated Tests

runtime of generated test

normalized runtime = . —
sum of runtimes of individual tests

267%

100%
()
£ 8%
=
— 60%
©
@
S 40%
=
- 0)
5 20% 9%
0%
1 2 3 4 5 all 1 2 3 4 5 all
SoCLib (System() MicroBlaze (RTL)

18/ 21



Compaction Rate—Execution Class

compaction rate of # of unique execution classes

execution class  total # of accelerator invocations
100%
= 80%
©
S 60%
O
S 40%
-
g 20%
3% 5%
0%
1 2 3 4 5 all 1 2 3 4 5 all
SoCLib MicroBlaze

19/ 21



Compaction Rate—

Concurrent and Sequential Scenarios
100%

= 80% concurrent scenario
S 60%
S 40%
o
20% 16% 13% —
g oc; N/A 3%
° 1 2 3 4 5 all 1 2 3 4 5 all
SoCLib MicroBlaze
o 100% _ _
T 800 sequential scenario
[
O  60%
(@)
3 A% ) 27%
S o N/A .
1 2 3 4 5 all 1 2 3 4 5 all

SoCLib MicroBlaze 20/ 21



AGARSoC Conclusions

Verifying accelerator interactions in SoCs

Analyzing software behaviors in high-level model

to identify high-priority interactions

Generating compact test to quickly achieve

coverage goals

Future work: data-sharing patterns, other SoCs

Thank you! Question?

21/ 21



Backup



Configuring Memory Trace

Analysis

= Minimal engineering effort to specify
1. How to delimit execution from memory trace
2. How to distinguish unique execution classes

= Delimiting execution

(

write Ox1 toreq O]
write 0x0 tored O8]

read fromred OQ
write 0x3 to red Q10
write 00 tored O8]

write 0x3 to red Q10
write Ox1 tored O]

) Mmemory accesses

to config registers

W N

Particular memory
operation signaling

= |dentifying classes

s

wite OxLtoreg O]
wite 00toreg g

reed fromred QG
witeOGtored ] |

What registers define
the mode of operation?
(e.g., 0x4 and 0x10)

{addr 0x4, value 0x1}, {addr 0x10, value 0x3}

the end of task (e.q.,
“write to reg 0x10")

class identifier

23/ 21



Discussions

FAexibility

= Two different SoCs evaluated in our experiment

= Applicable to SoCs where memory operations can be

observed

Enhancement
= Data-sharing patterns
= Randomize software executions

Accuracy

= Differentinteractions observed in untimed high level

Bug detection capability
= Similar to original software

24/ 21



	AGARSoC: Automated Test and Coverage-Model Generation for Verification of Accelerator-Rich SoCs
	Accelerator-Rich System on Chip
	SoC Integration
	Interactions among Accelerators
	AGARSoC Overview
	Outline
	Accelerator Execution Model
	Memory Trace Analysis
	Accelerator Interaction Scenarios
	Abstraction Example
	Inferring Unobserved Order
	Test Generation
	Test Generation Example
	Coverage Report
	Outline
	Experimental Setup
	Test Suites
	Runtime of Generated Tests
	Compaction Rate—Execution Class
	Compaction Rate—�Concurrent and Sequential Scenarios
	AGARSoC Conclusions
	Backup
	Configuring Memory Trace Analysis
	Discussions

