AGARSoC: Automated Test
and Coverage-Model
Generation for Verification
of Accelerator-Rich SoCs

Biruk Mammo, Doowon Lee (Speaker), Harrison Davis,
Yijun Hou, and Valeria Bertacco

Dept. of Electrical Engineering and Computer Science
University of Michigan

ASIA SOUTH PACIFIC

e [T

AUTOMATION
CONFERENCE




Accelerator-Rich System on Chip

Intel Atom x5 and x7 Processor Platform (Cherry Trail)

DDR3

¢

WiF

audio

-
memory graphic security
controller & media J processor

wireless : image
o multi-cores & caches
connectivity processor

USB 2.0

eMMC

controller UART

PCle
controller

USB3O

ye s | 2c | s J .
J

~
display L,
controller

sea of accelerators

screen

camera

Sensors

2/ 21



SoClIntegration
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Interactions among Accelerators

SoC design

memory display

graphlcs
& media

wireless security

GOAL: identify interactionsthat are likely to happen &
gear verification effort towards them
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AGARSoC Overview

= Automated Test and Coverage-Model Generation
for Verification of Accelerator-Rich SoC
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Outline

= Introduction
= AGARSOC: accelerator-rich SoCverification
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= Experimental evaluation

= Conclusion
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Accelerator Execution Model \:s:
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All units communicate via memory operations

Task execution sequence:

completion

task setup = data fetching = result writing => otification
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e
Accelerator Interaction ScenariosK‘

* |[nteractions among execution classes
= Execution classes =distinct accelerator patterns

= Two types of interactions

synchronized
observed

1. Concurrent 2. Sequential <
Crypto Image Crypto Image

D ——

———————

i time i time
on-chip network delay; state of on-chip network;
memory contention memory status after A1 affects A2
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e
Abstraction Example K&

accelerator tasks

threads of execution p A . We would like to extract:
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¢
Inferring Unobserved Order K&

accelerator tasks

threads of execution - - N

p AL - GPU Crypto Image 1.3(ecut|oncglasses

= : = ’ 2.concurrent scenarios
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' M
Test Generation B

= Multi-threaded, multi-phase test
= Multiple threads - concurrent execution scenarios
= Multiple phases — sequential execution scenarios

= Minimal schedule covering all concurrent and
sequential scenarios

= Test-generation configurations

= What (1) execution classes, (2) concurrent scenarios,
and (3) sequential scenarios should be selected?

= Should inferred sequential scenarios be included?
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Test Generation Example I.I.I

| B
execution classes Test-generation setting:
‘ O “Cover all concurrent and sequential scenarios”
. )
O ® [ generated test N\ [ alternative
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@O phasel @ O O
QO barrier
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Coverage Report L

= Automatically generated along with test LR

Classes
Name Countj Goal |Seen % of goal
GPU.1QR 7

Crypto.1 § 6
Crypto.2 § 6
Image.1 {5

How many times does
the generated test
cover this scenario? |nt

Does the generated test
include this scenario?

CTypPLo. I

Crypto.1 Imae.2

| #in generated test
# in original tests

33.3

How many times do [(S¢
the original tests |unt
cover this scenario?

GPU.1 GPU.1§ 1
Image.1 GPU.18 0

25.0
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Outline

Introduction
AGARSo0C: accelerator-rich SoC verification

Experimental evaluation

= Experimental setup
= Runtime

= Compaction rate

Conclusion
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Experimental Setup

Two SoCs modeled (SystemC and RTL)

SystemCmodel built on SoCLib framework*
= 3 cores (ARMv6k), 3 memory modules

= 3 accelerators (QPSK modulator, demodulator, FIR filter)
= 1 shared bus

RTL model built on Xilinx Vivado® design suite
= 3 cores (MicroBlaze), 1 shared memory

= 6 accelerators (FIRfilter, CIC filter, CORDIC module,
convolutional encoder, FFT module, complex multiplier)

= 2 AXl interconnects
Custom test-program suites

* http://lwww.soclib.fr/trac/dev 16/ 21



Test Suites
= 5 groups of test programs for SystemC model

m # ot programs

sequential accesses with locks

2 9 sequential accesses without locks
3 9 concurrent accesses with locks

4 9 concurrent accesses without locks
5 18 combinations of the four above

= 5 groups of test programs for RTL model

m # ot prograns

no synchronization

2 8 lock, single-accelerator invocation
3 5 lock, multi-accelerator invocation
4 7 barrier, redundant computations
5 13 semaphore synchronization
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Runtime of Generated Tests

runtime of generated test

normalized runtime = . —
sum of runtimes of individual tests
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Compaction Rate—Execution Class

compaction rate of # of unique execution classes

execution class  total # of accelerator invocations
100%
= 80%
©
S 60%
O
S 40%
-
g 20%
3% 5%
0%
1 2 3 4 5 all 1 2 3 4 5 all
SoCLib MicroBlaze
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Compaction Rate—

Concurrent and Sequential Scenarios
100%

= 80% concurrent scenario
S 60%
S 40%
o
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AGARSoC Conclusions

Verifying accelerator interactions in SoCs

Analyzing software behaviors in high-level model

to identify high-priority interactions

Generating compact test to quickly achieve

coverage goals

Future work: data-sharing patterns, other SoCs

Thank you! Question?
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Configuring Memory Trace

Analysis

= Minimal engineering effort to specify
1. How to delimit execution from memory trace
2. How to distinguish unique execution classes

= Delimiting execution

(

write Ox1 toreq O]
write 0x0 tored O8]

read fromred OQ
write 0x3 to red Q10
write 00 tored O8]

write 0x3 to red Q10
write Ox1 tored O]

) Mmemory accesses

to config registers

W N

Particular memory
operation signaling

= |dentifying classes

s

wite OxLtoreg O]
wite 00toreg g

reed fromred QG
witeOGtored ] |

What registers define
the mode of operation?
(e.g., 0x4 and 0x10)

{addr 0x4, value 0x1}, {addr 0x10, value 0x3}

the end of task (e.q.,
“write to reg 0x10")

class identifier
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Discussions

FAexibility

= Two different SoCs evaluated in our experiment

= Applicable to SoCs where memory operations can be

observed

Enhancement
= Data-sharing patterns
= Randomize software executions

Accuracy

= Differentinteractions observed in untimed high level

Bug detection capability
= Similar to original software
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