Efficient floating point precision
tuning for approximate
computing

Nhut-Minh Ho !, Elavarasi Manogaran %, Weng-Fai Wong * and
Asha Anoosheh 2

! National Univ. of Singapore, Singapore
2 Univ. of California, Berkeley, U.S.A.

Energy concern in computing

Top 500 supercomputers cost ~5400
million/year for energy consumption:

M Small- and Medium-Sized Data Centers 49%
M Enterprise/Corporate 27%

B Multi-Tenant Data Centers 19%

1%

Hyper-Scale Cloud Computing 4%

High-Performance Computing 1% :

Estimated U.S. data center electricity consumption by market segment http://www.nrdc.org/

ey

Other devices g

|
|

- .. Www.newtonbaba.com & google image

Green computing:
"FLOPS-per-Watt"

E

50Q

http://www.green500.org/

Reduce application
energy consumption

Error tolerant applications

e Big data analytics

e Media data processing/classification

e Simulations

e Non-critical functions in each program

Approximate Computing

Approximate computing

e Sacrifice accuracy for performance => also increase energy
efficiency

e Various approaches:

 Hardware:

e Low-power circuit with uncertainty

e Fine-grain floating-point bitwidth hardware
e Software:

e Task skipping: loop perforation

* Floating point precision tuning

Floating point numbers

e Appear almost in every computer program

float a = 999.0;
float b = 0.0001;
(int 1 = 0; 1 < 10000; i++)A
a += b;

h

Expected : a =1000.0 Actual : a = 1000.220703

1000.220703—1000 _
Error ~ ~22%x107%
1000

Precision tuning, previous work

e Arbitrary-precision fixed point tuning for DSP programs
e Many techniques: search-based, error analysis based.
 None of them can scale to real-world floating-point programs nowadays.

e 2-type floating point precision tuning
e Search for variables can be converted: double — float.
e Can analyze real-world applications.

e Recent works: Floatwatch 2007, Precimonious 2013, Enhanced Precimonious
2016.

e Cannot work on finer grained precision in different architecture without
modification.

2-type floating point is enough ?

e Modern CPU architecture: sufficient.

* FPGA (Field-programmable gate array) prototype showed advantages
of using finer grain floating point unit.

* Nvidia’s GPU (graphics processing unit) newest architecture supports

ha |f-prEC|S|On | Mixed Precision Stacked Memory

NVLink High-Speed Interconnect

-~

. - _http.://wwW.'nvidia.com/

Motivation

Current techniques for x86 applications: Current techniques for FPGA community:
* Moderately fast e Slow when processing complex applications
e Limited precision support (float & double) e Fine-grained precision (any number of bits)
e HLS paves the way for big and complex
applications on FPGA

& 4

Our goal:

e Fast

e Scale well

* Fine-grained precision support

* The result can be used on HLS process, as well as migrated to GPU

Ove rV|ew

__

Multiple- Arbitrary- Result Final Tuned

| precision — precision » refinement —— precision >

|] : . L , program(s)
| program | searching (optional) o requirement

Uszn;zsfac;fled High-level
i Y Synthesis
i constraints ! -

Input Searching Output

MPFR transformation

Precision assigned at runtime

function(){

function(){ mpfr t varl:

double varl = 1.0; mpfr_init2(varl,(53));
double var2 = varl + 1.0; mpfr_set d(varl, 1.0/ MPFR_RNDN):
" mpfr_t var2;
Iy mpfr_init2(var2,\53);
mpfr_add_d(var2, varl, 1.0, MPFR_RNDN);
+
Original code Rewritten code

Use Multiple Precision Floating-Point Reliable (MPFR) library to create the

Multiple-precision program for searching 10

Arbitrary-precision tuning

Multiple-
precision ——> —
program

User specified
accuracy
constraints

Input Searching

Precision

Arbitrary-precision tuning

x1 X2 x3 x4
Variable

function(){
mpfr t x1;
mpfr t x2=....;

mpfr_t x5=....;
)

e User defined accuracy
constraint €
e Err: error of the output

Region 1: Err < €

One slice of the search space

Region 2: E1r > €
x5

12

Step 1: Isolated downward

Find the minimum possible
precision for each variable
while keeping others at
highest precision.

3
/O\I Binary search + parallelism at
1 9\ variable level.
13 Run-time < log,(53 — 4)
Stepl result usually causes Err > €
x1 X2 X3 x4 x5

- -Stepl
13

Step 2: Grouped upward

From Stepl result, try to get back
to the solution

3

/0\, / Strategy: Get back to the point
I 1 where Err < € as fast as
9\13

possible.

x1 X2 X3 x4 x5

- -Stepl
14

Step 2: Grouped upward

T 1 bit T 1 bit
Err | T 1 bit Err 3
T 1 bit Errd
Errd T 1 bit
Errl
1 9\1
3
x1 X2 X3 x4 x5

- -Stepl

Strategy: Get back to the point
where Err < € as fast as
possible.

Greedily shift the blue line

upward:

e 1 variable at a time: good
but stuck when no variables
can reduce Err

The effect may not propagate to
the output => no change in Err

15

Step 2: Grouped upward (cont)

e OQur approach: “grey-box” distributed search

Dataflow graph

X3 =x1+x2
x5 =x3 * x4

When increasing precision of a variable,
should increase all other variables in the
path from it to the output.

Increase precision of the whole dependence
group, not single variable.
{x1,x3,x5}, {x2,x3,x5}, {x3,x5}

16

Step 2: Grouped upward

x1 X2 x3 x4 x5

e Shift Step1 result upward by
competition between groups of
variables.

e Group reduces most error will
win 1 bit for all members.

e Parallelize at group level (5

groups)

Step 2 gives an acceptable result
higher than the solution.

17

The iterative process

e Reuse step 1 to find another
result closer to the solution.

\ e Then reuse step 2 to move

T —— upward to the solution.

e The algorithm converges
after a few epochs.
x1 X2 X3 x4 x5
- -Step2
Stepl 18

Result

e Quality: =6% fewer in number of bits compared to an established
algorithm Max-1(for small programs).

e Complexity:

* T = time to run the input program (multiple-precision version):

* Average: 25.9x T, .. , for programs have 10-45 variables

* Large program (417 variables): 110.5x T, .

19

Compare to state-of-the-art

* Precimonious searches for the mixed use of 2 types : float and
double.

* The fine-grain results are mapped to 2 types for comparison.

20

Number of double variables required fore = 107°

50
45
£ 40
235

S 20

45

42
32
13 13
I 3
ep cg

M Original program

31

13

4

polyroots

® PrecB 10°®

34

11
I 6
sum

® Ours 10°©

17

blas

PrecB: tuned by Precimonious
2016 [7].

Ours: tuned by our tool
chain

21

Speedup (%) compared to the original version

Speedup (%)

60

Ul
o

o
o

w
o

N
o

[ERY
o

o

cg

15.4

49.5
41.5

4.8 3.4 3.4
° 1IN I
polyroots sum blas

™ PrecB 10 m Ours 10™*

e= 10"%

22

Aggregated result across 11 programs

400 Majority

350

W
(=)
o

€=10"* €=10"°

N
Ul
o

=108 €=107"°

New floating
point type ?

NUMBER OF VARIABLES
= = N

8)] o 8)] o

o o o o

o

4 8 12 16 20 24 36 40 44 48
PRECISION

52

2,666 floating-point
variables across 4 error
thresholds (€)

% variable can be in half-
precision (11 bits) :

e ~66% for 104

e =~52% for 10°

e ~38% for 108

e =~31% for 1010

23

Result refinement

Multiple-
precision
program

Arbitrary-
precision
searching

User specified
accuracy
constraints

A

Input

Searching

24

Input variation problem

function(float 32 input){
float 32 output = input * input;
}

Input=1.2,¢ = 107>

function(float_16 input){

J

float 25 output = input * input;

Input=1.2, Err < 107>

Input = 1000.0, Err = ?
Input =0.01, Err =7

———

Statistically guided refinement
for input € [0.01;1000]

Training set of M seeds for
random number generator
in range [0.01;1000]

o o = = = = = = = = = = = = = -]

1 seed number = 1 representative input
Training set of 100 seeds

Statistically guided refinement

function(float 32 input){ worst_seed=1, € = 10-5 | function(float_20 input){
float 32 output = input * input; > float_18 output = input * input;

} }

Average Err over 100 seeds = ?
worst_seed =?

function(float_20 input){

.) =2 A EFrr=50 X% 1 -3
float 22 output = input * input; Average Err over 100 seeds = ? Average Err = 5.0 X 10

worst_seed = ? worst_seed = 43 causes Err = 1072

\ l worst_seed =43, € = 107>

function(float_16 input){
float 22 output = input * input;

)

)

26

Result on DSP programs, target e = 107°

—After

—Before

102 1073 10~4 103 10-© 1077
Error (log scale)

=

Before, average = 2.3 X 10™%, max =3.4 X 1074 After, average = 4.9 X 107%, max =2.5 x 10~

pA

Arbitrary precision version on Vivado HLS

Accuracy constraint: 50-60dB

Average resource consumption & execution time (normalized) of 6
programs with different precision assigned on Vivado HLS

2

£ 4.0

ofd

§3.0

s I B
o | = - -

Execution Time LUTs DSPs

m Single Precision m Double Precision = Arbitrary Precision (tuned by our tool)

28

Conclusion

e Our algorithm can scale to large and long running programs:

* E.g. T,,-= 20 mins, number of variables = number of MPI threads < 45
=> Expected searching = 26 x 20 = 520 mins.

 We use program’s high-level dependence information to guide the
distributed search process.

 Input variation problem can be mitigated with our statistics guided
refinement process.

* This tool paves the way for using HLS with arbitrary precision on large
programs.

29

Thanks for listening

Q&A

Link to github repository

https://github.com/minhhn2910/fpPrecisionTuning

31

https://github.com/minhhn2910/fpPrecisionTuning

	Efficient floating point precision tuning for approximate computing
	Energy concern in computing
	Error tolerant applications
	Approximate computing	
	Floating point numbers
	Precision tuning, previous work
	2-type floating point is enough ?
	Motivation
	Overview
	MPFR transformation
	Arbitrary-precision tuning
	Arbitrary-precision tuning
	Step 1: Isolated downward
	Step 2: Grouped upward
	Step 2: Grouped upward
	Step 2: Grouped upward (cont)
	Step 2: Grouped upward
	The iterative process
	Result
	Compare to state-of-the-art
	Number of double variables required for 𝜖= 10 −6
	Speedup (%) compared to the original version
	Aggregated result across 11 programs
	Result refinement
	Input variation problem
	Statistically guided refinement
	Result on DSP programs, target 𝜖= 10 −5
	Arbitrary precision version on Vivado HLS
	Conclusion
	Thanks for listening
	Link to github repository

