Loop Aware IR-Level Annotation Framework for
Performance Estimation in Native Simulation

Omayma matoussi Frédéric Pétrot

TIMA Laboratory — France

01/17/2017

)\\ ﬁ "
/) ! ! KALRAY

Introduction

Software back-annotation
Source-level simulation
IR-level simulation

The proposed mapping technique
The proposed IR-annotation framework
Basic concepts
The proposed mapping algorithm

Experimentation
Instruction count estimates
Simulation time

Conclusion and perspectives

Introduction

» Multiprocessor system on chip (MPSoC) platforms are
becoming more software-centric.

» Software has a considerable impact on the overall performance
of the system.

» Hardware/software co-simulation is essential during the
co-design process of MPSoC platforms
» early SW development
» architecture exploration and HW/SW co-verification
» performance estimation

Introduction

» Multiprocessor system on chip (MPSoC) platforms are
becoming more software-centric.

» Software has a considerable impact on the overall performance
of the system.

» Hardware/software co-simulation is essential during the
co-design process of MPSoC platforms
» early SW development
» architecture exploration and HW/SW co-verification
» performance estimation

Introduction

» Instruction interpretation (ISS, DBT, SBT, etc.)
» too many details of the software
» cycle accurate
» slow simulation speed
» Native simulation
» Very high abstraction level.
> very fast.
» absence of non-functional information.

Introduction

» Instruction interpretation (ISS, DBT, SBT, etc.)
» too many details of the software
» cycle accurate
» slow simulation speed
» Native simulation
» Very high abstraction level.
> very fast.
» absence of non-functional information.

Introduction

» How to introduce non-functional information in native
simulation?

» How to extract non-functional information? (software analysis)

» Where to insert non-functional information? (annotation level
+ mapping process)

Introduction

» How to introduce non-functional information in native
simulation?

» How to extract non-functional information? (software analysis)

» Where to insert non-functional information?
(annotation level + mapping process)

The objective of this work:

propose a mapping approach that has the following characteristics:

» it is architecture independent (high-level IR).

» it considers all compiler optimizations (IR + mapping).

> it is the least intrusive (both compiler-wise and original
code-wise).

> it provides accurate mapping between IR and binary CFGs.

> it yields reasonable simulation time.

Introduction

Software back-annotation

Source-level simulation
IR-level simulation

The proposed mapping approach
The proposed IR-annotation framework
Basic Concepts
The proposed mapping algorithm

Experimentation
Instruction count estimates
Simulation time

Conclusion and perspectives

10/43

Software back-annotation

Back-annotation

It consists of inserting non-functional information (such as time
information, energy metrics, data addresses, instruction count,
etc.) into a high-level functional model.

.L3: movl %edx, (%rax)
addq $4, %rax

addl %ecx, %edx

cmpq %rsi, %rax

jne L3

for i=0;i<n;i++){
a=b+g;
T[] = (i+1)*a;}

source code machine code

11/43

Software back-annotation

Back-annotation

It consists of inserting non-functional information (such as time
information, energy metrics, data addresses, instruction count,
etc.) into a high-level functional model.

for (i =0;i < n;i++) { | packeannot | -L3: movl %edx, (%rax)
nb_instr4=>5; addq $4, %rax
a=b+c addl %ecx, %edx
T[] = (i+1)*a;} cmpq %rsi, %rax
jne L3
source code machine code

12 /43

Source-level simulation

SLS

Source level simulation considers the source code as a functional

model in which annotations will be inserted.

1: for (i=0;i < n;i++){
2: nb_instr4+=b;
3:a=b+c

4: T[i] = (i+1)*a;}

source code

.L3: movl %edx, (%rax)
addq $4, %rax
addl %ecx, %edx
cmpq %rsi, %rax
jne .L3

machine code

13 /43

Source-level simulation

SLS
Source level simulation considers the source code as a functional
model in which annotations will be inserted.

addl b(%rip), Y%ecx

L for (i =0; <niit++) { L3: movl %edx, (%rax)

2: nb_instr+=5; addq $4, %rax
3:a=b+c 0 0
& T[] = (i+1)%a:) addl %ecx, Y%edx
' ' cmpq %rsi, Y%rax
jne .L3
source code machine code

14 /43

Source-level simulation

SLS
Source level simulation considers the source code as a functional
model in which annotations will be inserted.

debug info: |- addl b(%rip), %ecx

12.for (i=0;i < i++) { m L3: movl %edx, (%rax)
2_nb,|nstr+:?/ addq $4, %rax

3: a= b +q . add| %ecx, %edx

4: T[i] = (i+1)*a;} cmpq %rsi, %rax

jne .L3

source code machine code

15/43

IR-level simulation

ILS

Intermediate level simulation uses the compiler intermediate
representation as a functional model in which non-functional
information will be back-annotated.

front-end —N\

& .
middle-end

—|back-end | —

low-level RTL

16 /43

An IR example(1/2)

Control flow graph

A CFG is a directed graph where the nodes are basic blocks and
the edges represent jumps between the nodes.

Basic block

A basic block is a sequence of consecutive instructions without any
jumps, except for the last instruction, or jump targets, except for
the first instruction.

@)
@)
@)
@)
S

17 /43

An IR example(2/2)

for (i=0;i<n;i++){
a=b+g
Tli] = (i+1)*a;}

source code

corresponding
IR CFG

L]
<bb 2>:
if (n.4_14 > 0)
goto <bb 3>;
else
goto <bb 6>;
v | I
<bb 3>:
pretmp_2 = b;
pretmp_12 = ¢;

pretmp_19 = pretmp_2 + pretmp_12;

goto <bb 4>;

<bb 4>:

ivtmp.14_4 = ivtmp.14.20 + 4;
if (ivtmp.14_4 1= 28)

goto <bb 4>;
else
goto <bb 5>;
<bb 5>
a = pretmp_19;
goto <bb 6>;
\“
<bb 6>:
return;

v

18 /43

An IR example(2/2)

for (i=0;i<n;i++){
a=b+g
Tli] = (i+1)*a;}

source code

corresponding
IR CFG

L]
<bb 2>:
if (n.4_14 > 0)
goto <bb 3>;
else
goto <bb 6>;
v | I
<bb 3>:
pretmp_2 = b;
pretmp_12 = ¢;

pretmp_19 = pretmp_2 + pretmp_12;

goto <bb 4>;

<bb 4>:

if (ivtmp.14.4 |= 28)
goto <bb 4>;

else

goto <bb 5>;

ivtmp.14_4 = ivtmp.14.20 + 4;

'

<bb 5>
a = pretmp_19;
goto <bb 6>;

N

A

<bb 6>:
return;

¥ 19/43

Introduction

Software back-annotation

Source-level simulation
IR-level simulation

The proposed mapping approach
The proposed IR-annotation framework
Basic Concepts
The proposed mapping algorithm

Experimentation
Instruction count estimates

Simulation time

Conclusion and perspectives

20/43

The proposed |IR-annotation framework

A = annotation = native
Gimple-CFG-To-C _ . . _ .
insertion sim platform
IR-CFG compilable IR-CFG annotated compilable
T IR-CFG
cross - -
— compiler CFG mapping }—»[mapplng data base]

source code

AN AN
. Extract CFG Extract BB Info }—>[BB data base]

target binary target binary CFG

21/43

Basic concepts

Strongly connected component

A SCC is a maximal set of vertices such that for every pair of
vertices u and v in the set there is a path from u to v and a path
from v to u.

SCCl - SCC2

Fixedpoints
Two elements, each from a graph, that are determined to be
equivalent, are considered to be fixedpoints.

22 /43

The proposed mapping algorithm

IR CFG Bin CFG s as

The proposed mapping algorithm

1. Decompose the CFGs into SCCs.

IR CFG Bin CFG 0443

The proposed mapping algorithm
@Sccbm1
©

1. Decompose the CFGs into SCCs.

IR CFG Bin CFG s

£
=
4+
=
o
o0
T
20
=
o
o
(q0]
S
ge!
Q
(%)
o
o
o
| -
o
)
=
_I

» A SCC with at least one arc is a loop block.

26 /43

Bin CFG

IR CFG

The proposed mapping algorithm

2. Reconnect the SCCs to form a condensed CFG.

sccyt @ @sccbml
scC,2 SCChin2
SCC;,3 SCChin3
SCC;4 SCCpind
5CC,5 @ #Sccm
SCCi6 - sccb,-ns
sCC,7 @ scc,,,-n7
SCC,8 @ sccb,-ns

IR CFG Bin CFG 07 /43

The proposed mapping algorithm

3. Match the condensed CFGs.

@SCCWI

SCCpin2
SCChin3

SCChind

SCCbm5

SCC;1(2 =
entry SCCs are fixed pts
SCC;2 -
loops are fixed pts
SCC,3
SCC; 4
SCC;5 @
SCC;6
5CC,7 @
5CCy8 @
IR CFG

SCCpinb

SCCbm7
@ SCCpin8

Bin CFG 28 /43

The proposed mapping algorithm

» Propagate fixedpoints using PRED/SUCC relations.

@SCCM”I

SUCC(SCCpin2)=SCCpin3

SCC,1
SUCC(SCC;2)=5CC,3

SCC;3 SCCpin3

(51|

SCCir5 SCChn5

SCCpinb

SCChin?

sORRO

SCC;8 SCChin8

SCC;6
SCC; 7 @

IR CFG Bin CFG 29 /43

The proposed mapping algorithm

» Propagate fixedpoints using PRED/SUCC relations.

@SCCM”I

SUCC(SCC;2)=SCC;:3 SUCC(SCCpin2)=SCCpin3

SCCpin3

(51|

PRED(SCC;,4)=5CC;3 PRED(SCCpip#)=SCCypin3

SCChind

SCC;6 SCCpinb

SCGirt SCCon?

sORRO

SCC,,S SCChin8

;
g
g

IR CFG Bin CFG 30/43

The proposed mapping algorithm

» Propagate fixedpoints using PRED/SUCC relations.

SCC,,l @SCCWI

SUCC(SCC;2)=SCC;:3 SUCC(SCCpin2)=SCCpin3

SCC;,3 SCChin3

(1|

PRED(SCC;,4)=5CC;3 PRED(SCCpip#)=SCCypin3

SCC;5 SCChi5

SCCpinb

SCGirt SCCon?

sORRO

SCC;8 SCChin8

;
-3
g

IR CFG Bin CFG 31/43

The proposed mapping algorithm

» Propagate fixedpoints using PRED/SUCC relations.

SCC;1 @ @SCCWI

SUCC(SCC;2)=5CC,3 SUCC(SCCpin2)=SCCpin3

SCC;3 4)SCCp3

(1|

(4|

PRED(SCC;,4)=5CC;3 PRED(SCCpip#)=SCCypin3

SCC;5(13

nO

@sccbins
SCC,6 gsccbme
SCC;7(16 @Sccbm7
SCC;,8 (exit @SCCM"S

IR CFG Bin CFG 32/43

The proposed mapping algorithm

» inside loop blocks.

1
LP'0.2 ,
1

IR CFG Bin CFG 33/43

The proposed mapping algorithm

> remove the back edge.

1
LP'0.2 ,
1

IR CFG Bin CFG 34 /43

The proposed mapping algorithm

> apply the mapping process on the loop block.

LP’0_2

LP0_2

IR CFG Bin CFG 35 /43

The proposed mapping algorithm

> apply the mapping process on the loop block.

LP’0_2

LP0_2

IR CFG Bin CFG 36 /43

Introduction

Software back-annotation

Source-level simulation
IR-level simulation

The proposed mapping approach
The proposed IR-annotation framework
Basic Concepts
The proposed mapping algorithm

Experimentation
Instruction count estimates

Simulation time

Conclusion and perspectives

37/43

Experimentation

» The target architecture is a 32-bit Kalray k1 core.
> The host processor is a 64-bit Intel x86 CPU.

» The native simulation platform is an in-house HW/SW
co-simulation tool based on TLM.

» Our reference is a cycle accurate ISS platform by Kalray.

» The Benchmarks we used are Polybench and Splash.

38/43

Instruction count estimates

Table 1: Comparison of the number of instructions

Benchmark |FFT BbSort | MMult | Radix Trmm Lu atax
ISS 35399998 | 5451974 | 79104 | 6565782 | 148695 |16672930|28251
ILS 35038273 | 5451998 | 79111 6572218151822 | 16568886 | 28571

ILS-ERROR |-1.02% |0.00% |0.00% |0.09% |2.10% |-0.62% |1.13%
SLS-ERROR |-67.08% |-81.51% |-21.97% |-39.48% |-28.84% |-41.55% |-53.14%

Benchmark | 3mm covar. gemm reg-detect | jacobi gesu. | durbin
ISS 782941 | 175205 | 320192 | 10251 66719 | 28279 | 26224
ILS 806692 | 179861 | 318642 | 10310 68022 | 29066 | 27232

ILS-ERROR [3.03% |2.66% |-0.48% |0.58% 1.95% |2.78% |3.84%
SLS-ERROR | -22.4% | -69.98% | -31.05% |-66.22% |-74.97% | -68.2% | -68.67%

39/43

Simulation time

256 F 7T T T T T T T T DriginalCode-(1SS)
OriginalCode-(NativeSim)
e~ OptimizedCode-(NativeSim)
@ 64 g
w
1]
=]
@
S 1e}]
[=]
h=)
w
© 4t]
o
(=)
[<}]
w
c
@ 1r 1
E
E
7 025 |]

Comparison of simulation time

40/43

Introduction

Software back-annotation

Source-level simulation
IR-level simulation

The proposed mapping approach
The proposed IR-annotation framework
Basic Concepts
The proposed mapping algorithm

Experimentation
Instruction count estimates
Simulation time

Conclusion and perspectives

41/43

Conclusion

> We proposed a mapping scheme between the IR and binary
CFGs for the purpose of performance estimation.

» The mapping scheme focuses especially on loops because they
are hot spots.

» Our approach is architecture-independent and takes into
account compiler front-end and back-end optimizations.

» Experiments underline the accuracy of the mapping approach
and its reasonable simulation time.

42 /43

(2) sca

€ 43 /43

	Introduction
	Software back-annotation
	Source-level simulation
	IR-level simulation

	The proposed mapping technique
	The proposed IR-annotation framework
	Basic concepts
	The proposed mapping algorithm

	Experimentation
	Instruction count estimates
	Simulation time

	Conclusion and perspectives

