
26/01/17	

1	

Virtual Prototyping of Smart Systems 
through Automatic Abstraction and 

Mixed-Signal Scheduling 
Michele Lora, Enrico Fraccaroli, Franco Fummi  

Department	of	Computer	Science,	University	of	Verona,	Italy	

Outline 

•  Smart systems 
•  Objectives and motivations 
•  Guiding Idea: 

–  State of the art digital model abstraction 
–  An analog model abstraction technique 
–  A mixed-signal scheduling methodology 

•  Analog abstraction 
•  Mixed-signal scheduling 
•  Experimental setup and results 
•  Conclusions 
17 Jan. '17 2 ASP-DAC 

Smart Systems 

17 Jan. '17 3 

Computation Communication Sensing Actuation 

Harsh Environments 

ASP-DAC 

Efficient Simulation Environment 

Environmental 
Interferences 

Functional 
(analog and digital) 

Extra-Functional 
(analog) 

Objectives and Motivations 

•  Analog 
–  Ad-Hoc Simulators 
–  Analog extensions of HDLs 

•  VHDL-AMS 
•  Verilog-AMS 
•  SystemC-AMS 

•  Digital 
–  Hardware Description Languages 

•  VHDL 
•  Verilog 

–  System-Level Description 
Languages 

•  SystemC 

17 Jan. '17 4 ASP-DAC 

The Babel 

VHDL 
verilog 

verilogA 

SystemC 

SystemC/AMS 

IP-Xact 

UML 

verlogAMS 

SystemVerilog 

Matlab 

spice 

SysML 

C/C++ 

SystemC/TLM 

      of Languages 
Methodology Overview (1/2) 

17 Jan. '17 ASP-DAC 6 

The Babel          of Languages 

C++ 



26/01/17	

2	

Methodology Overview (2/2) 

17 Jan. '17 ASP-DAC 7 

Heterogeneous	Virtual	Pla@orm	
(Mixed	languages)	

Digital	peripherals	

Analog	
Sub-model	

Analog	model	
Abstrac7on	

Digital	
Sub-model	

Mixed-Signal	
Analysis	

Mixed-Signal	
Scheduling,	
Op7miza7on	
&	C++	Code	
Genera7on	

Digital	model	Abstrac7on	CPU	MEMORY	

DAC	

BUS	

ADC	

Analog	peripherals	

Homogeneus	Virtual	Pla@orm	
(C++)	

CPU	Memory	

DAC	 ADC	Analog	
Peripherals	

BUS	

…	

Digital	peripherals	

…	

1	 EquaNons	system	
acquisi7on	

2	 EquaNons	system	
enrichment	

3	 Cone	of	influence	
explora7on	

4	 EquaNons	system	
symbolic	solving	

Orders of magnitude speed-up 

Digital Abstraction 

•  Guiding idea: 
– RTL models are abstracted up to TLM / C++ code 

•  Interface and protocol abstraction: 
– RTL interface is replaced with a TLM (or C++) interface 
– Communication protocol is abstracted so that a single transaction 

spans through multiple clock cycles 
•  N. Bombieri, F. Fummi, G. Pravadelli, Automatic Abstraction of RTL IPs into Equivalent 

TLM Descriptions, IEEE Transactions on Computers, vol. 60, n. 12, 2011, pp. 1730-1743 

•  Data types abstraction : 
– HDL data types are mapped to C++ native data types 

•  N. Bombieri, F. Fummi, V. Guarnieri, F. Stefanni, S. Vinco, HDTLib: an efficient 
implementation of SystemC data types for fast simulation at different abstraction levels, An 
International Journal on Design Auto. for Emb. Systems, vol. 16, n. 2, 2012, pp. 115-135 

•  Process scheduler abstraction: 
– HDL processes are abstracted to C++ functions by implementing 

static / dynamic and mixed scheduling policies 
•  S.Vinco, V.Guarnieri, F.Fummi, Code Manipulation for Virtual Platform Integration, IEEE 

Transactions on Computers, vol. 65, n. 9, 2016, pp. 2694-2708 

17 Jan. '17 8 ASP-DAC 

EDALab HIFSuite tools 
 

Analog Abstraction (1/7) 

•  Guiding idea: 
– Abstraction from Circuit Level to Functional Level 

– Consider only relations with semantic meanings between a value 
of interest and the inputs of the model 

17 Jan. '17 9 ASP-DAC 

L. Scheffer, L. Lavagno, and G. Martin, EDA for IC Implementation, Circuit 
Design, and Process Technology. CRC Taylor & Francis, 2006. 

Analog Abstraction (2/7) 
Equation system enrichment 
•  Find relations between circuit branches by 

–  solving each of the initial equations 
–  applying Kirchhoff's flow law (KFL) and Kirchhoff's potential law (KPL) 

•  Some of these equations are in a linear dependency relation 

17 Jan. '17 10 

V(ep,n1)	

V(n2,en)	

V(ep)-V(n1,n2)-V(n2,en)	

V(ep)-V(ep,n1)-V(n1,n2)	

I(ep,n1)	

I(n1,n2)	

Linear Dependences 

V(ep,n1)/R	

I(ep,n1)	

LHS (Key) List of Equations 

I(ep,n1)*R	

off+amp*sin(V(ep))	

I(n1,n2)	

V(n1,n2)	 V(ep)-V(ep,n1)-V(n2,en)	ddt(I(n1,n2))*L	

idt(I(n1,n2))/L	

ASP-DAC 

System of Equations Network Topology 

Analog Abstraction (3/7) 
Cone of Influence Exploration 
•  Purpose: Value of Interest → Inputs of the Model 
•  Enriched system of Equation → Graph representation 

–  A labeled node is associated to each equation 
–  An edge connects a node A to a node B whenever 

•  the lhs variable of the equation associated with the second node(B) 
•  appears on the rhs of the equation associated with the first node(A) 

17 Jan. '17 11 

e

b

a
V(ep,n1)	=	I(ep,n1)*R	

V(ep,n1)	=	V(ep)-V(n1,n2)-V(n2,en)	

V(n2,en)	=	off+amp*sin(V(ep))	

I(ep,n1)	=	V(ep,n1)/R	

V(ep)	

I(ep,n1)	=	I(n1,n2)	

V(n1,n2)	=	V(ep)-V(ep,n1)-V(n2,en)	

I(n1,n2)	=	I(ep,n1)	

V(n1,n2)	=	ddt(I(n1,n2))*L	

I(n1,n2)	=	idt(V(n1,n2))/L	

V(n2,en)	=	V(ep)-V(ep,n1)-V(n1,n2)	

a

f

g

e

b

k

h

i 

c

d

j

ASP-DAC 

Inputs	of	the	Model	

Analog Abstraction (4/7) 
Cone of Influence Exploration (contd.) 
•  Select the minimum set of equations describing the Behavior of the Value of Interest 

–  Start: Equation describing the Value of Interest 
–  Equation of a visited node is stored inside the minimum set and the node is disabled 
–  End: All the nodes are disabled 

"Whenever an equation belonging to a linearly dependent set is selected, the nodes 
associated with the other equations of the set are disabled" 

17 Jan. '17 12 

Value	of	interest	

j 

e

bd

c a

f 
g

hi 

k

V(ep,n1)	=	I(ep,n1)*R	

V(ep,n1)	=	V(ep)-V(n1,n2)-V(n2,en)	

V(n2,en)	=	off+amp*sin(V(ep))	

I(ep,n1)	=	V(ep,n1)/R	

V(ep)	

I(ep,n1)	=	I(n1,n2)	

V(n1,n2)	=	V(ep)-V(ep,n1)-V(n2,en)	

I(n1,n2)	=	I(ep,n1)	

V(n1,n2)	=	ddt(I(n1,n2))*L	

I(n1,n2)	=	idt(V(n1,n2))/L	

V(n2,en)	=	V(ep)-V(ep,n1)-V(n1,n2)	

a

f

g

e

b

k

h

i 

c

d

j

ASP-DAC 

algebraic loop 



26/01/17	

3	

Analog Abstraction (5/7) 
Equation System Symbolic Solving 
•  Purpose 

–  Optimizes the model and breaks all algebraic loops 
•  How 

–  Symbolically solve the minimal set of equations 
–  Symbolic solver: GiNaC 

•  Before solving the system 
1.  Access function are transformed into a C++ compliant naming 
2.  Derivatives and Integrals are discretized (accuracy ↔ techniques) 

17 Jan. '17 13 

V(ep,n1)	=	I(ep,n1)*R	

I(ep,n1)	=	I(n1,n2)	

V(n1,n2)	=	V(ep)-V(ep,n1)-V(n2,en)	

I(n1,n2)	=	idt(V(n1,n2))/L	

ASP-DAC 

I_n1_n2	=	Accum_V_n1_n2/L	

Accum_V_n1_n2	
is called auxiliary variable 

V(n2,en)	=	off+amp*sin(V(ep))	

V(ep)	

V_ep_n1	=	I_ep_n1*R	

I_ep_n1	=	I_n1_n2	

V_n1_n2	=	V_ep-V_ep_n1-V_n2_en	

I_n1_n2	=	idt(V_n1_n2)/L	

V_n2_en	=	off	+	amp*sin(V_ep)	

V_ep	

Analog Abstraction (6/7) 
Equation System Symbolic Solving (contd.) 
•  The system of equations is composed by 

–  the circuit equations 
•  and is solved for 

–  the Value of Interest and variable used to evaluate the auxiliary variables 

17 Jan. '17 14 ASP-DAC 

𝑙ℎ𝑠= ∑𝑖↑▒(​𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦↓𝑖 ∗​𝑐𝑜𝑛𝑠𝑡↓𝑖 )+∑𝑗↑▒( ​𝑖𝑛𝑝𝑢𝑡↓𝑗 + ​𝑐𝑜𝑛𝑠𝑡↓𝑗 )   

V_ep_n1	=	I_ep_n1*R	

I_ep_n1	=	I_n1_n2	

V_n1_n2	=	V_ep-V_ep_n1-V_n2_en	

I_n1_n2	=	Accum_V_n1_n2/L	

V_n2_en	=	off	+	amp*sin(V_ep)	

V_ep	

System of Equations Unknowns 
V_ep_n1	

V_n1_n2	

Analog Abstraction (7/7) 
Abstracted Model Generation 
•  The solution is used to generate an abstracted C++ simulation model 
•  It contains 

–  An assignment for the Value of Interest 
–  An assignment for each Value used to update an Auxiliary Variable 
–  An update assignment for each Auxiliary Variable 

17 Jan. '17 15 ASP-DAC 

V_ep_n1	=	Accum_V_n1_n2*C1	+	V_n2_en*C2	+	V_ep*C3	

V_n1_n2	=	Accum_V_n1_n2*C4	+	V_n2_en*C5	+	V_ep*C6	

V_n2_en	=	off	+	amp*sin(V_ep)	

Solved Equations 

class	Model	{			
		public:	
				void	process(double	Ts)	{			
						V_ep_n1=…;	
						V_n1_n2=…;	
						//	Update	auxiliaries	
						Accum_V_n1_n2			=	…;	
				}	
		private:	
				double	R=…,	L=…,	amp=…,	off=…;	
}	

Mixed-signal Scheduling (1/3) 

•  Guiding idea: 
– Digital abstraction produces C++ functions 
– Analog abstraction produces C++ functions 

•  synchronization and scheduling of these C++ functions is 
necessary to correctly reproduce the behavioral evolution of the 
initial AMS description 

•  Dependency graph enrichment 
–  dependencies between synchronous processes are modelled 
–  enriched with the exact timing of asynchronous processes that have 

to be synchronized 
•  Temporal decoupling 

–  edges among processes are a partial order relation 
–  not related processes are decoupled and simulated independently 

•  Synchronization 
–  the global time is managed accordingly to the dependencies  

17 Jan. '17 16 ASP-DAC 

Mixed-signal Scheduling (2/3) 

•  Enriched dependency graph construction 
 

17 Jan. '17 ASP-DAC 17 

Enriched	Dependency	Graph	Digital	Dependency	Graph	

​
"↓
1 	

​
"↓
2 	

A	

​"↓1 		
(t)	

​"↓2 		
(t)	

A	

​"↓2 ′		
(t+7)	

​%↓1 		
(t+7)	

​"↓& 	
(t)	

​"↓& 	
(t+2)	

​"↓& 	
(t+4)	

​"↓& 	
(t+6)	

​"↓& 	
(t+7)	

`;mescale	1ms/1us	

…	

always	@(posedge	clk)	begin	

	A	<=	in;	

end	

	

always	@(A)	begin	

	B	<=	f(A);	

	#(7)	out	=	B	+	V(n);		

end	

	

analog	begin	

	V(n)	<+	A	+	…;	

End	
	

Verilog	Source	Code	

A	

V(n)	

Mixed-signal Scheduling (3/3) 

17 Jan. '17 18 ASP-DAC 

Synchronous	Elabora/on	​("↓1 )	

Ts	

Explicit	delay	

Analog	Process	
Execu/ons	

( ​"↓% )	

t(ms)	

Delta	Cycle	( ​"↓2 )	

0	ms	 0	ms	
+	Δ	

2	ms	 4	ms	 6	ms	 8	ms	7	ms	

A	 V(n)	

Synchroniza/on	( ​"↓2 ′)	

•  Temporal decupling and synchronization 
 



26/01/17	

4	

Experimental Platform 

17 Jan. '17 19 ASP-DAC 

•  A smart platform (OSTC) composed of analog and digital 
components: 

RC Filter 
1, 5, 10, 20 

Multiple 
Inputs Ideal OpAmp MEMS 

Accelerometer 

Memory MIPS 
CPU 

BUS 

UART RF 
Transceiver 

Analog 
Peripheral 

Transinductance 
Amplifier Real OpAmp MEMS 

Actuator 

Experimental Results (1/3) 

•  Proposed methodology has been implemented 
–  in OCCAM (Ordinary C++-Code for Analog Models) 
–  on top of EDALab’s HIFSuite framework 

17 Jan. '17 ASP-DAC 20 

Benchmark Relations Inputs Outputs Lines	of
Code

Abstraction
Time	(s)

RC1 2 1 1 17 0.009
IN2 3 2 1 21 0.012
PIFilter 4 1 1 21 0.008
IN3 5 3 1 31 0.015
Voltage	Limiting
Operational	Amplifier 2 1 1 33 0.007

Ideal
Operational	Amplifier 6 1 1 31 0.009

Transimpedence
Amplifier 3 1 1 33 0.007

RC5 10 1 1 42 0.014
RC10 20 1 1 67 0.026
RC20 40 1 1 117 0.078
MEMS	Accelerometer 66 10 8 123 0.020
MEMS	Mechanical
Actuator 28 1 1 408 0.084

Experimental Results (2/3) 

17 Jan. '17 ASP-DAC 21 

Component Platform
time	(s) time	(s) time	(s) speed-up	(x) time	(s) speed-up	(x) time	(s) speed-up	(x) time	(s) speed-up	(x)

RC1 3365.87 4972.86 20.67 162.84 1457.66 3.41 1.59 2120.11 154.73 32.14
IN2 3419.13 4934.58 25.23 135.51 1558.97 3.17 2.77 1234.34 157.02 31.43
PIFilter 3475.80 4990.13 31.14 111.61 1599.70 3.12 2.27 1533.95 153.34 32.54
IN3 3575.54 5070.32 31.25 114.43 1692.64 3.00 4.06 879.83 156.90 32.32
Voltage	Limiting
Operational	Amplifier 3138.62 4712.55 3.62 867.29 159.73 29.50

Ideal
Operational	Amplifier 3499.48 5024.72 30.21 115.83 1599.52 3.14 1.77 1982.30 156.42 32.12

Transimpedence
Amplifier 3438.67 5114.33 1.91 1801.78 154.92 33.01

RC5 3438.38 5051.94 43.46 79.11 1722.90 2.93 2.87 1200.03 160.61 31.45
RC10 3584.68 5165.78 76.15 47.07 2076.72 2.49 5.86 612.00 163.39 31.62
RC20 3879.56 5358.37 129.34 29.99 2631.01 2.04 16.36 237.18 177.93 30.12
MEMS	Accelerometer 4196.61 5723.16 181.80 23.08 3936.65 1.45 11.60 361.76 168.78 33.91
MEMS	Mechanical
Actuator 8078.35 9769.48 114.64 70.47 275.53 35.46

Not	applicable	due	to	nonlinearities

Not	applicable	due	to	nonlinearities

Benchmark

Heterogeneous SystemC-AMS/ELN
(Analog:	Verilog-AMS) (ABACUS	automatic	translation)

Component Platform Component Platform

Not	applicable	due	to	nonlinearities

C++
(OCCAM	automatic	abstraction)

Experimental Results (3/3) 

•  Relative impacts of the proposed techniques 

17 Jan. '17 ASP-DAC 22 

1	

10	

100	

1000	

10000	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

M
ix
ed

	

C+
+	

RC1	 IN2	 PIFilter	 IN3	 Real	
OpAmp	

Ideal	
OpAmp	

TIA	 RC5	 RC10	 RC20	 MEMS	
Accel.	

MEMS	
Actuator	

Component	 PlaCorm	 SynchronizaGon	

Conclusions 

•  We presented a methodology for effectively 
generating Smart Systems virtual platforms through: 
– digital models abstraction 
– analog models abstraction 
– mixed-signal scheduling 

•  Homogeneous C++ virtual platforms can be thus 
generated 
– orders of magnitude simulation speed-up with 

respect to state-of-the-art mixed-signal language 
simulators 

17 Jan. '17 23 ASP-DAC 

 
The simulation barrier between 

analog and digital models has been 
sensibly reduced 

 


