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12-Apr-17 3Source: Joshi et al. HOTI, 2008
Intel Xenon 7500 processor Intel Tilera 100-core chip

• 512-core chip by 2020

The Manycore era…
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• How good is Electrical NoC?
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Interconnects Energy 
(pJ/bit)

Bandwidth 
Density (Gbps/µ)

On-chip Optimally 
Repeated Electrical Link 1.0 5.0

On-chip Photonic Link 0.25 160.0-320.0

Off-chip Electrical Link 
(100 µ pitch) 5.0 0.1

Off-chip Photonic Link 
(50 µ Coupler pitch) 0.25 13-26

Electrical Interconnects vs Photonic Interconnects

Photonic interconnects based Network-on-Chips (PNoCs)
provide  higher bandwidth with lower power consumption

Source: Joshi et al. HOTI, 2008 and 
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Introduction to Photonic Elements

Waveguide Microring Resonator
(Modulator/Detector)

Circular 
Waveguide with 
diameter 5µm

2.5µm

Silicon oxide cladding 
(RI = 1.45)

Crystalline silicon 
core (RI = 3.5) 

1X2
Splitter

Splitter Coupler

2X1
Coupler
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Introduction to Photonic Elements

Modulator Detector

Electrical
Bit-stream

101010

Electrical
Bit-stream

010101

Modulators and detectors are used to traverse data 
in photonic links of PNOCs 

• Microring resonator operation
Modulator to write data
Detector to read data

SiGe
Doped
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On an average 15-200C of temperature gradient 

64-core PNoC
22 nm PTM
HotSpot 5.0
Total Time Slice: 1000 Sec
PARSEC and Splash Suites
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Motivation

Pass band shift with thermal variation

Reason: Refractive index of ring  
varies with temperature

• Temperature versus pass band shift (MRR resonance wavelength shift)
 Linear dependency (Δ𝝺𝝺shift= K ΔTmax)

Temperature variation impact on MRR
MRR will receive this 

wavelength (Resonance)
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Ring Modulators

Ring Detectors
SiGe Doped Trans Impeadence

Amplifier (TIA)

Waveguide

Change in temperature causes 
resonance wavelength drift

Unable to write on 
dedicated wavelengths 

Suppose modulation side 
successfully writes data

Temperature variation causes 
detector wavelength drift  

Read Wrong Data 
(Data Corruption)

4 DWDM (Dense Wavelength 
Division Multiplexing)

Source: Joshi et al. HOTI, 2008 and 

These drawbacks of MRRs motivate us to propose a 
dynamic thermal management for PNoCs



Device-level thermal management in PNoCs :
• [Z. Li et al. IEEE TVLSI 2012] Presents athermal photonic devices to reduce the localized tuning/trimming 

power in MRs
• [Joanna et al. Materials 2010] Use of liquid crystal cladding to reduce the effect of temperature variations

System-level thermal management in PNoCs:
• [C. Nitta et al. HPCA 2011] overhead associated with localized tuning of MRRs is reduced in using the 

group drift property of co-located MRs
• [T. Zhang et al. DATE 2014] a ring aware thread scheduling policy (RATM) is proposed to reduce on-

chip thermal gradients in a PNoC

Related Work
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These works do not consider:
1) impact of run-time workload variations 
2) relationship between thermal hotspots and transmission reliability

These works:
1)High power and area overhead
2)Require costly  changes in the manufacturing process 



Going Deeper into Thermal Distribution
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Simulating PARSEC and SPLASH suite on 3D-ICE shows:
Three major temperature zones i.e. 363K, 343K, 323K

64 core PNoC
Tool: 3D-ICE
Benchmark: PARSEC and 
SPLASH



Cross-layer: IHDTM Framework
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Laser 
Source

MRR 
Group

Thermal 
Sensors

Core

Inter 
Island 
Thread 

MigrationIntra 
Island 
Thread 

Migration 

Applications

System-level
TATM

Core Temp. from 
Thermal Sensors

Scheduler

CORE IN
TIS1-ISLAND

CORE IN 
TIS2-ISLAND

CORE IN 
TIS3-ISLAND

MRR GROUP IN
TIS1-ISLAND

MRR GROUP IN 
TIS2-ISLAND

MRR GROUP IN 
TIS3-ISLAND

Device-level 
Thermal Islands



PID Controlled Heater
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• Each MRR is integrated with a PID controlled heater
• Thermal sensor of corresponding core feeds 

temperature data 
• Heater is set to work at the corresponding island 

temperature.

Heater Type Power Req
(mW/nm)

Heating τ (µs) Cooling τ (µs)

Doped-Si 3.138 21.3 66.0

Silicide 3.462 19.1 75.8

Tungsten 3.6 38.2 45.11

Doped WG 3.369 43.4 39.8

Source: D Dang et al, ICCD 2015
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𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒐𝒐𝒐𝒐 𝒕𝒕𝒕𝒕𝒕𝒕 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

1. Sensor-start
2. 𝒊𝒊𝒊𝒊 𝑻𝑻 ! = 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

a. 𝒅𝒅𝒅𝒅 = |𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 − 𝑻𝑻|

b. 𝑷𝑷𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = 𝒅𝒅𝒅𝒅
𝝆𝝆
∗ 𝑯𝑯𝒆𝒆𝒆𝒆𝒆𝒆

3. 𝒊𝒊𝒊𝒊 𝑻𝑻 ≥ 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
c. 𝒊𝒊𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = 𝒊𝒊𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 − 𝑷𝑷𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯/𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

4. 𝒊𝒊𝒊𝒊 𝑻𝑻 < 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
c. 𝒊𝒊𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = 𝒊𝒊𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 + 𝑷𝑷𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯/𝑹𝑹𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯

𝟓𝟓.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 (𝟏𝟏 ∗ 𝟏𝟏𝟏𝟏𝟔𝟔) // Delay of 1 mili-second
6. Loop continue

PID Algorithm
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• SVR model employs a kernel based regression 
 Kernel is Radial Basis Function (RBF) 

• Training of SVR
 9-core (3×3) platform is used to generate training sets
 with different thread mappings of PARSEC and SPLASH-2 benchmark apps

 Running 2, 4 and 8 threads
• Determination of accuracy of SVR

 6000 floor plans are generated
 70% are used for training 
 30% are used for testing

 Accuracy of our SVR model is over 95%

SVR based Temperature Prediction



• We Analyzed our IHDTM Framework by porting it to PNoCs
 [D. Vantrease et al. MICRO 2009] Corona PNoC architecture with token slot arbitration 

and 64X64 multiple write single read (MWSR) crossbar
 [Y. Pan et al. HPCA 2010] Flexishare PNoC architecture with token stream arbitration 

and multiple write multiple read (MWMR) crossbar
• CMP configuration for implementation for Corona and Flexishare PNoCs

Experimental Setup

24

CMP Configuration

Number of cores 64
Technology node 32nm
Memory controllers 8
Main memory 8GB; DDR4@30ns
Per Core:
L1 I-Cache size/Associativity      32KB/Direct Mapped Cache
L1 D-Cache size/Associativity      32KB/Direct Mapped Cache
L2 Cache size/ Associativity 256KB/ Direct Mapped Cache
L2 Coherence MOESI
Frequency 5 GHz
Issue Policy In-order12-Apr-17



• We compare IHDTM when ported to Corona and Flexishare with 
 [T. Zhang et al. DATE 2014] a ring aware policy (RATM)
Distributes threads uniformly across cores that are closer to PNoC MRR 

clusters 
then distributes the remaining threads in a regular pattern from 

outer cores to inner cores
 [I. Yeo et al. DAC 2008] predictive dynamic thermal management (PDTM) 

framework
Uses a recursive least square based temperature predictor
When a core temperature is more than thermal threshold
 Thread migration is performed to the coolest core that is not 

executing any threads

12-Apr-17 25

Comparison with Prior Work
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Corona: D. Vantrease et al. MICRO 2009

• With integrated localized tuning by PID heater, IHDTM lowers maximum temperature 
compared to RATM by
 migrating threads from hotter cores to cooler cores 
 RATM does a simple thread allocation (no control on max temp.)

• Both IHDTM and PDTM keep maximum temperature below thermal threshold

IHDTM has 13.2K and 2.37 K lower maximum temperatures compared to the RATM 
and PDTM policies respectively, for 48 threads

Max Temp for Corona with 48 Threads 
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• IHDTM has 13.72K and 1.56K lower maximum temperatures compared to the RATM
and PDTM policies respectively, for 32 threads
IHDTM has better maximum temperature control for 32 threads compared to 48 

threads as more free cores are available for thread migration 

Max Temp for Corona with 32 Threads 
Corona: D. Vantrease et al. MICRO 2009
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• IHDTM with Corona has lower power dissipation than RATM and PDTM
 IHDTM has 61.6% and 62.5% lower trimming and tuning powerIHDTM with Corona has 45.5% and 46.8% lower total power consumption compared 

to Corona with RATM and PDTM respectively

Corona Power for 64-core CMP
Corona: D. Vantrease et al. MICRO 2009
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• Flexishare with IHDTM has 63.5% and 64.1% lower power dissipation compared to 
Flexishare with RATM and PDTM respectively

Flexishare with IHDTM has more power savings compared to Corona with IHDTM

(a) 48-threads                                             (b) 32-threads

Flexishare Power for 64-core CMP
Flexishare: Y. Pan et al. HPCA 2010
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• Corona with IHDTM has 12.8% and 7.4% higher execution time compared to Corona 
with RATM for 48 and 32-threads respectively
 IHDTM takes slightly extra time for migration whereas no migration in RATM

• Corona with IHDTM has 2.6% and 4.3% higher execution time compared to Corona 
with PDTM for 48 and 32-threads respectively
 IHDTM performs more migration (inter and intra) when thermal emergency is 

predicted

(a) 48-threads                                                       (b) 32-threads

Corona Execution Time for 64-core CMP



• Proposed IHDTM framework
 combines a novel device-level framework with a new dynamic thermal management

mechanisms to
reduce maximum on-chip temperature
conserve trimming and tuning power

• IHDTM improvements over state-of-the-art solutions
up to 64.1% (Total Power), 71% (Trimming/tuning power)

• IHDTM is more effective in reducing power for optimized PNoCs like Flexishare
compared to Corona

12-Apr-17 31

Conclusion



• Questions / Comments ?

Thank You

12-Apr-17 32
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These solutions have higher power consumption and motivates
to system level approach

Extra:Tolerate Thermal Variations
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