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Waluable Ways at the Right Time
Data Things
Using Data for Decision Physical Devices and Objects
Making Connected to the Intemet and Each

Other for Intelligent Decision Making

¥ What to authenticate?

rdevnce user, da’ra and pr'ocess _ |
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( Voltage Over-Scaling

% Reducing V4 for power reduction

F P=Piat*Payn=CoreVad T +Vad(Tsup+ Lgate)

# Quadratic dependence of power to V44
% Critical Voltage -

= Cell delay d . oVa/B(Vig= Ve )
¥ Scaling below critical voltage

= Error due to path delay
= Incorrect computation
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Figure 1: Impact of voltage scaling on path delay distribution.
Mean and sigma of delay distribution and number of paths failing
to meet target delay increase (80-core processor in 65nm [2]).
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( VOS for DRAM Deanonymization

% Key idea:
= Use DRAM at a lower voltage
r Cell decay rate is a function of process variation
= Lowering V4 will create errors in the data
= Similar error pattern on the same chip
= Profile the error for deanonymizing DRAMs

(a) (b) I (c)

Figure 2: DRAM fingerprints on data
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( Motivation of the Work

% Fabrication variation impacts VOS
r Transistor size shrinking makes V, variation wider
opve=Apn/(WL)2
= Path delay error is a function of process variation
dgate Vdd/ p(vdd t)a
= =»observe (V,) variation by VOS?!
= Variation is believed to be unique, random, unclonable

% Security applications
= Device fingerprint/identifier
= Device authentication ity |
= Hardware PUF and other security primitives
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Where to Apply VOS?

( ¥ The circuit/device: simple, but ...
¥ Small.and common building blocks

% Existing VOS studies on dn‘feren‘r adders

= Ripple Carry Adder
= Carry Look ahead Adder
# Han-Carlson Adder

log of probability
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Figure 3:-Error Distribution for Different Adders [7]
)Venka'resan et al. ICCAD'11
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VOS on Adders

( % All inputs are equi-pr'obable
% Error probability increase with scaling

# Output error depends on both current
input and the previous input

log of probability

(c) HC32

(a) RCA32 (b) CLA32
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VOS Errors on RCA

# Why RCA?
= One of the simplest designs
= Error probability is higher with scaling
= Show our proposed ideas only
= 8-bit for reduced simulation time

% Goals of the experiment
= Uniqueness
= Robustness -

|
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( Experimental Setup

% HSpice platform with FreePDK 45nm libraries

# 200 modified NMOS and PMOS models with a
+7.5% standard variation in V,

# NMOS and PMOS transistor models are
randomly chosen to build 100 different
versions of each cell standard cell library.

% Circuits designed in Verilog and synthesized
with Cadence Virtuoso RT compiler.

% The synthesized design is converted into an
HSpice netlist with standard cells randomly
chosen from the modified library |

%
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Experimental Parameters 5 '

Value(s)

Supply voltage (V) 0.4V/0.45V/1V
NMOS threshold voltage (V,,) 0.322%0.02415V
PMOS threshold voltage (V) -0.302=%+0.02265V

Operating temperature (7) 25 deg. C

Clock Period (7,;,) Ins
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Uniqueness of Error under VOS

Al 0 18.82 1824 18.04 19.44 1838 18.33 17.52

A2 18.82 0 3536 521 567 565 389 539

A3 18.24 5.36 0 462 598 5.1 5 6.79

A4 18.04 521 4.62 0 573 353 413 6.44

A5 1944 567 598 5.73 0 604 559 6.28

A6 1838 565 511 353 6.04 0 496 6.64

A7 1833 3.89 5 4.13 559 496 0 541

A8 1752 539 6.79 644 628 6.64 541 0

Table 1. Paurwuse Hammmg dls‘rance (m percen‘r) be‘rween the
s output from 8 devices at 0.4V. |
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Robustness with V Va‘r'im‘ion'_

¥ With vdl"rage increases
* Error probability
decreases

8 Ou’rpu’r conver'ges to
the correct value

= Noise in V44 can have
detrimental effect

- Figure 7. Hamming distance (in per'cen’r)
' between devices at 0.45V .
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Robustness with Temperature
( Variation '

% Error distribution is temperature sensitive

% No. of bit flips. is relatively small with small
temperature variations
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Figure 8. Temperature dependent bit flips for two different adders. The
distance is calculated from the results produced at T=25 degree Celsius.
The blue (left) bar represents the temperature dependent bit-flip for

< adder A2 and the yellow (right) bar represents the adder A3.
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VOLtA: Protocol

|

% Registration
= Bob has a password K=(k1, k2)

rm Alice registers K=(k1, k2), and profiles or models
the error pattern M.

¥ Authentication

= Alice picks a random string R and sends it to Bob.

= Bob calculated L=R+k1 using the adder and then
calculates Y=L @ k2 =(R+kl) ®k2.

= Bob sends Y to Alice.

= Alice calculates L=Y ®k2 and L'=M(R k1). If
distance (L' L) < threshold, Bob is authenticated.
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|

VOLtA: Analysis

% Effectiveness
% Choice of Key

* Attacks _
* Random Guessing
= Eavesdropping
= Side-channel Attack
= Learning Attack

%
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VOLtA: Illustrative Example -

(d) (e) (f)
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Measurements Metrics: '
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Figure 6. A his’rogr'ahi of the Euclidian distances (a) between the
flgur'es 5(0) and 5(b);- (b) between the figures 5(a) and 5(c); be’rween
the figures 5(b) and 5(c)
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( Conclusions.

% Hardware for lightweight security in ToT

¥ Voltage Over-Scaling
= A popular approximate computing method

= Leaves a process variation dependent device
signature in the approximate results

= Drawbacks: information leak, deanonymization
2> A new security primitivel

¥ VOS based Device authentication

= Lightweight: low cost, (low level of) security
# Good for certain IoT applications
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