## STEAM "Spline-based Tables for Efficient and Accurate Device-Modelling"

Archit Gupta, Tianshi Wang, Ahmet Gokcen Mahmutoglu, Jaijeet Roychowdhury EECS Department, UC Berkeley

#### **RRAM Crossbar**





#### **High Frequency NPN**



### **RRAM Crossbar**





A ANNES ATHERETA NO ACCEPTED IN SEC.

#### **High Frequency NPN**



### **RRAM Crossbar**











Image Source: Wikipedia

#### **High Frequency NPN**





### **RRAM Crossbar**



### 32nm planar FET 22nm tri-gate FET





#### Image Source: Wikipedia

#### **RRAM** Crossbar **High Frequency NPN** Metallic Top Electrode Switching Medium **Bottom Electrode** 1 function MOD = BSIM3v3\_2\_4\_ModSpec(uniqID) ... 1348 32nm planar FET 22nm tri-gate FET 1349 1350 E function vecLim = initGuess(u, MOD) ... % initGuess 1793 1794 1795 function vecLim = limiting... 1796 ÷ (vecX, vecY, vecXold, vecYold, u, MOD) ... % limiting 2300 2301 ⊞ function [fe, qe, fi, qi] = fqei\_all(vecX, vecY, vecLim, u, flag, MOD)... 2302 5088 1 function MOD = BSIM3v3 2 4d ModSpec(uniqID) ... 458 459 If function [fgei out, J out] = fgeiJ(vecX, vecY, vecLim, vecU, flag, MOD) 489

 490
 function [fe\_, qe\_, fi\_, qi\_,...

 491
 d\_fe\_d\_X\_, d\_qe\_d\_X\_, d\_fi\_d\_X\_, d\_qi\_d\_X\_,...

 492
 d\_fe\_d\_Y\_, d\_qe\_d\_Y\_, d\_fi\_d\_Y\_, d\_qi\_d\_Y\_] = ...

 493
 ⊞
 fqei\_dfqeidXYU(vecX\_, vecY\_, MOD)....

 4535
 I

Image Source: Wikipedia





### Simulator (equation engine...) gives v<sub>pn</sub>, v<sub>in</sub>



i<sub>pn</sub>: "explicit output"



i<sub>pn</sub>: "explicit output"



i<sub>pn</sub>: "explicit output"







i<sub>pn</sub>: "explicit output" v<sub>pn</sub>: "other IO"









Simulator (equation engine...) gives  $v_{pn}$ ,  $v_{in}$ It wants  $i_{pn}$  to solve a system of equations! Usually, it also wants some derivatives



Simulator (equation engine...) gives v<sub>pn</sub>, v<sub>in</sub> It wants i<sub>pn</sub> to solve a system of equations! Usually, it also wants some derivatives We want some sort of Look-Up table to give us i<sub>pn</sub> and derivatives





$$\frac{d}{dt}0 + \frac{v_{pn} - v_{in}}{R} = i_{pn}$$



$$\frac{d}{dt}0 + \frac{\mathbf{v}_{pn} - \mathbf{v}_{in}}{R} = i_{pn}$$
$$\frac{d}{dt}C\mathbf{v}_{in} + diode(\mathbf{v}_{in}) + \frac{\mathbf{v}_{in} - \mathbf{v}_{pn}}{R} = 0$$



$$\frac{d}{dt}0 + \frac{v_{pn} - v_{in}}{R} = i_{pn}$$
$$\frac{d}{dt}Cv_{in} + diode(v_{in}) + \frac{v_{in} - v_{pn}}{R} = 0$$

This can be generalized to practically any circuit or model that we are interested in.



$$\frac{d}{dt}0 + \frac{\mathbf{v}_{pn} - \mathbf{v}_{in}}{R} = i_{pn}$$
$$\frac{d}{dt}C\mathbf{v}_{in} + diode(\mathbf{v}_{in}) + \frac{\mathbf{v}_{in} - \mathbf{v}_{pn}}{R} = 0$$

This can be generalized to practically any circuit or model that we are interested in.

$$\begin{aligned} &\frac{d}{dt}q_e(\ldots) + f_e(\ldots) = z(t) \\ &\frac{d}{dt}q_i(\ldots) + f_i(\ldots) = 0 \end{aligned}$$



$$\frac{d}{dt}0 + \frac{v_{pn} - v_{in}}{R} = i_{pn}$$
$$\frac{d}{dt}Cv_{in} + diode(v_{in}) + \frac{v_{in} - v_{pn}}{R} = 0$$

This can be generalized to practically any circuit or model that we are interested in.

 $\frac{d}{dt}q_{e}(...)+f_{e}(...)=z(t)$   $\frac{d}{dt}q_{i}(...)+f_{i}(...)=0$   $i_{pn}: \text{"explicit output"}$ 



$$\frac{d}{dt}0 + \frac{v_{pn} - v_{in}}{R} = i_{pn}$$
$$\frac{d}{dt}Cv_{in} + diode(v_{in}) + \frac{v_{in} - v_{pn}}{R} = 0$$

This can be generalized to practically any circuit or model that we are interested in.



#### 32 nm Planar Transistors



#### 22 nm Tri-Gate Transistors



#### 32 nm Planar Transistors

{



#### 22 nm Tri-Gate Transistors



#### 32 nm Planar Transistors



#### 22 nm Tri-Gate Transistors



Model parameters,

32 nm Planar Transistors



22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s),

32 nm Planar Transistors



22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s), Other IO(s), ...

32 nm Planar Transistors



22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s), Other IO(s), ...

}

32 nm Planar Transistors



22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s), Other IO(s), ...



32 nm Planar Transistors



22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s), Other IO(s), ...



32 nm Planar Transistors



Model parameters, Internal unknown(s), Other IO(s), ...



22 nm Tri-Gate Transistors


32 nm Planar Transistors



Model parameters, Internal unknown(s), Other IO(s), ...



22 nm Tri-Gate Transistors



32 nm Planar Transistors



Model parameters, Internal unknown(s), Other IO(s), ...



22 nm Tri-Gate Transistors



32 nm Planar Transistors



}

22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s), Other IO(s), ...

32 nm Planar Transistors



22 nm Tri-Gate Transistors



Model parameters, Internal unknown(s), Other IO(s), ...

$$\begin{split} & \frac{d}{dt} q_e(\ldots) + f_e(\ldots) = z(t) \\ & \frac{d}{dt} q_i(\ldots) + f_i(\ldots) = 0 \end{split}$$

32 nm Planar Transistors



32 nm Planar Transistors



32 nm Planar Transistors







Machine Translation is openly available – VAPP

#### tion is VAPP Qi Qi Qe fi MODSPEC











• Solvers typically follow a method of prediction-correction.

- Solvers typically follow a method of prediction-correction.
  - Predictions can be wrong and UNREASONABLE

- Solvers typically follow a method of prediction-correction.
  - Predictions can be wrong and UNREASONABLE
- Extrapolation plays a very important role in this context

- Solvers typically follow a method of prediction-correction.
  - Predictions can be wrong and UNREASONABLE
- Extrapolation plays a very important role in this context
  - Determines whether or not the an unreasonable prediction will return to a correct region of operation

- Solvers typically follow a method of prediction-correction.
  - Predictions can be wrong and UNREASONABLE
- Extrapolation plays a very important role in this context
  - Determines whether or not the an unreasonable prediction will return to a correct region of operation
  - How long will this "return" take

- Solvers typically follow a method of prediction-correction.
  - Predictions can be wrong and UNREASONABLE
- Extrapolation plays a very important role in this context
  - Determines whether or not the an unreasonable prediction will return to a correct region of operation
  - How long will this "return" take

#### Linear extrapolation is an option











Linear extrapolation can be too restrictive!



Linear extrapolation can be too restrictive!



Linear extrapolation can be too restrictive!

Speedup Accuracy Memory

# Simulation Results

#### Test Circuits and Waveforms











### Speedup Evaluation

#### Speedup Evaluation

Core device evaluation BSIM 100-150X, MVS 20-40X
### **Speedup Evaluation**



### **Speedup Evaluation**



AC 7-10X, TRANSIENT 6-8X

## **Speedup Evaluation**



Core device evaluation BSIM < 0.00001% MVS < 0.001%







## The cost is Memory and table evaluation time

Spline evaluation Table sizes and computation times

#### The cost is Memory and table evaluation time



• Memory requirements 'can' be lowered:

- Memory requirements *'can'* be lowered:
  - The plots for reconstruction error seem to be saturating

- Memory requirements *'can'* be lowered:
  - The plots for reconstruction error seem to be saturating
  - Splines are probably not the best interpolants, but work as a proofof-concept

- Memory requirements *'can'* be lowered:
  - The plots for reconstruction error seem to be saturating
  - Splines are probably not the best interpolants, but work as a proofof-concept
- Exploiting structure in the polynomial coefficients obtained from tablebased modelling

- Memory requirements *'can'* be lowered:
  - The plots for reconstruction error seem to be saturating
  - Splines are probably not the best interpolants, but work as a proofof-concept
- Exploiting structure in the polynomial coefficients obtained from tablebased modelling
- Simulating circuits with measurement data!

QUESTIONS