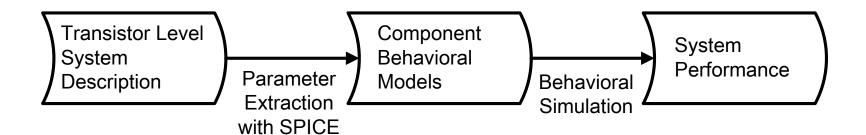
A Time Domain Behavioral Model for Oscillators Considering Flicker Noise

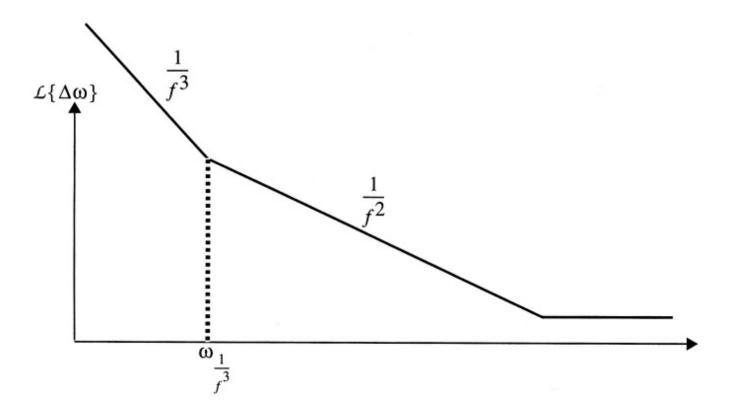
ASP-DAC 2017

Hui Zhang and Bo Wang


The Key Lab of IMS, School of ECE, Shenzhen Graduate School Peking University, China

Chiba, Japan, Jan.18, 2017

Outline


- Introduction
- Relationship between jitter and phase noise
 - The link for thermal noise
 - Discuss and derive the link for flicker noise in detail.
- Model Implementation
- Theory and model verification
 - Theory verification
 - Model verification
 - Comparison of the phase noise
 - Comparison of the period jitter's PSD
- Conclusions

Time Domain Behavioral Model Needed

- Large-signal time domain model is the only suitable model for the circuit without steady-state solution.
 - Fractional-N PLL
 - Bang-bang PLL
- Design space exploration can be done efficiently by the behavioral model.

Phase Noise in Oscillators

 The -20dB/dec and -30dB/dec regions are up-converted by the thermal and flicker noise respectively.

State-of-the-Art

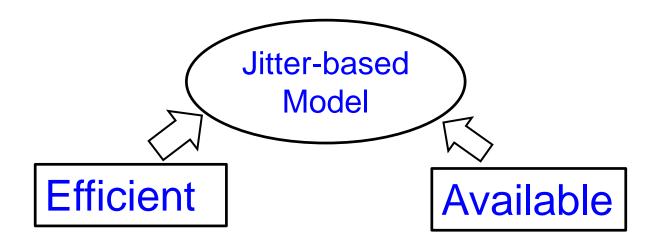
Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers

Ken KundertDesigner's Guide Consulting, Inc.

Citation: 169 (based on Google Scholar)

- Most cited paper in modeling PLL and the oscillator behaviorally
- Jitter-based time domain and phase domain model
- To be improved: "This excludes flicker noise."

State-of-the-Art


Event-Driven Simulation and Modeling of Phase Noise of an RF Oscillator

R.B. Staszewski et al., TCAS-I, 2005

Citation: 101

- Second most cited paper in modeling oscillator behaviorally
- Jitter-based time domain model
- To be improved: "A further correction has to be made" when model the 30dB/dec rolling off region of the phase noise.

Jitter-based Model

- Both of the two top cited models are jitter-based.
 - Efficient: noise is represented only on the timing of the transitions(in the form of jitter)
 - Available: jitter extraction methodology is based on the commercially available simulator such as SpectreRF

Link between Jitter and Phase Noise Considering Only Thermal Noise

The relationship between the period jitter variance and the phase noise with only the thermal noise is

$$\sigma_{thermal}^{2} = L(\Delta f) \frac{\Delta f^{2}}{f_{0}^{3}}.$$

The jitter extracted from this formula is proved to be accurate in modeling the -20dB/dec of the phase noise.

Extract the Jitter due to Flicker Noise

Hajimiri(JSSC99), McNeil(ISCAS04) et al.:

$$\sigma^{2}(\tau) = \frac{2}{(\pi f_{0})^{2}} \int_{0}^{+\infty} L_{\phi}(\Delta f) \sin^{2}(\pi \Delta f \tau) d\Delta f$$

The formula is not closed-form.

Flicker noise is nonstationary.

R.B. Staszewski(*TCAS-I*, 2005):

$$\sigma_{\Delta T, \frac{1}{f}} = \frac{\Delta f_{c,1}}{f_0} \cdot \sqrt{T_0} \cdot \sqrt{2\mathcal{L}\{\Delta \omega_{c,1}\}}.$$

- Not rigorous
- Further correction to be made in modeling the -30dB/dec region,

Mathematical Foundation

$$\sigma_{1/f}^{2}(\tau,t) = \frac{2}{(\pi f_{0})^{2}} \int_{1/t}^{+\infty} \frac{k}{\Delta f^{3}} \sin^{2}(\pi \Delta f \tau) d\Delta f$$

$$= \frac{2k\tau^{2}}{f_{0}^{2}} \{ -\frac{1}{2} [x^{-2} \sin^{2}(x) + x^{-1} \sin(2x)]_{\pi\tau/t}^{+\infty}$$

$$+ \int_{2\pi\tau/t}^{+\infty} x^{-1} \cos(x) dx \}$$

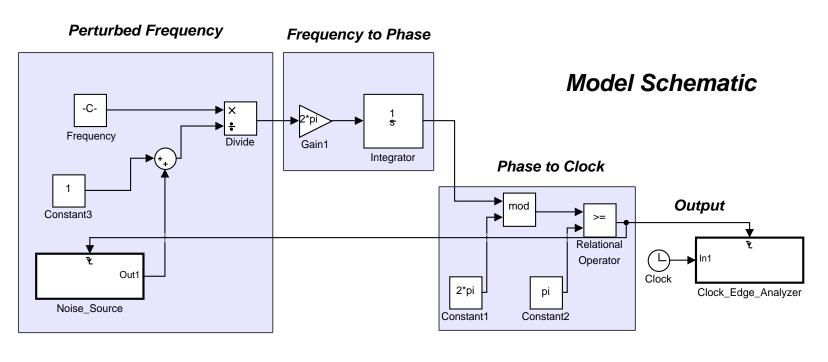
$$Ci(z) = -\int_{z}^{+\infty} \frac{\cos(x)}{x} dx$$

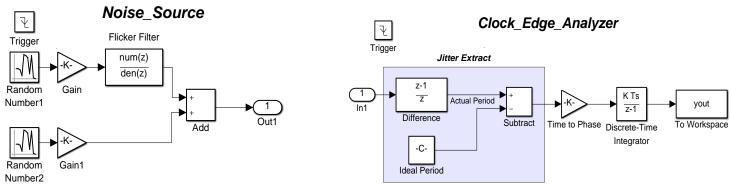
$$Ci(z) = \gamma + \ln(z) + \sum_{n=1}^{+\infty} \frac{(-1)^{n}(z)^{2n}}{(2n)!(2n)}$$

- The flicker noise is 'postulated' as an stationary stochastic process by introducing a cut-off frequency.
- Solving the integral analytically will establish a link.

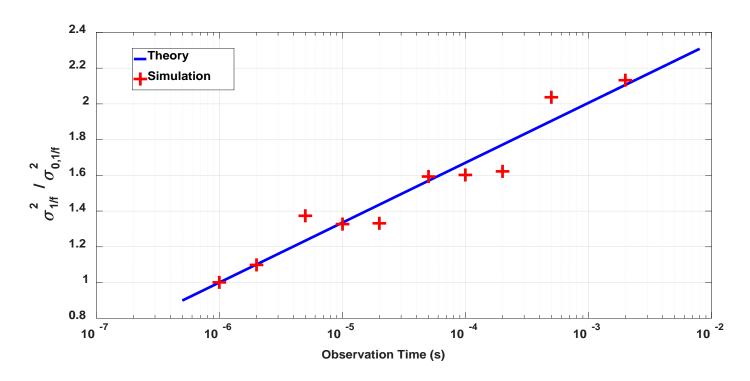
Link between Jitter and Phase Noise Considering Only Flicker Noise

 We relate the variance of the period jitter with the phase noise for flicker noise as

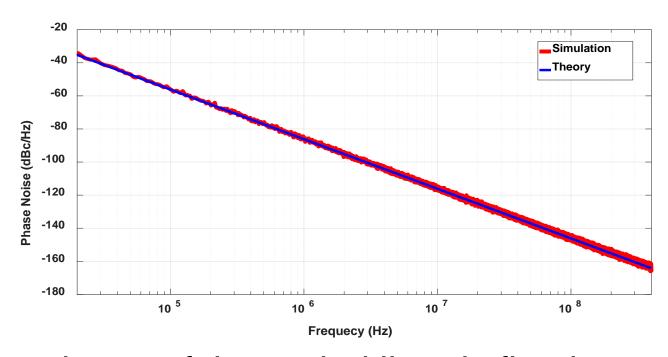

$$\sigma_{1/f}^2(t) = 2\left[\ln\left(\frac{t}{T_0}\right) - 0.9151\right] \frac{\Delta f^3}{f_0^4} L(\Delta f)$$


This expression is CLOSED-FORM and COMPACT.

t: the observation time Δf : the offset frequency


 $L(\Delta f)$: the single-sided spectral noise density f_0 : the nominal frequency

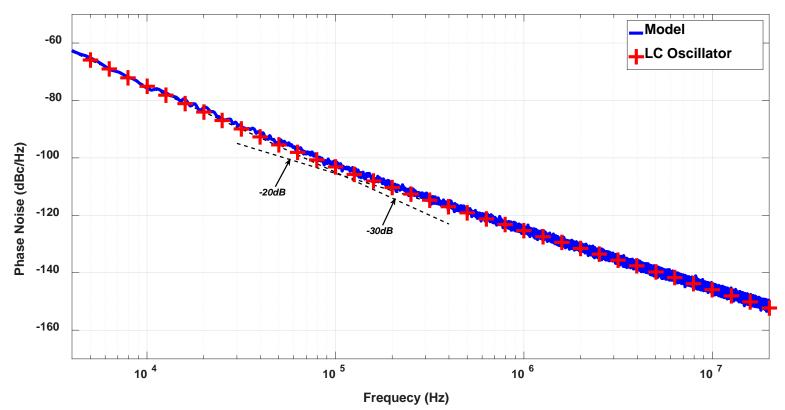
Time Domain Model of Oscillators Including the White and Flicker Noise



Theory Verification

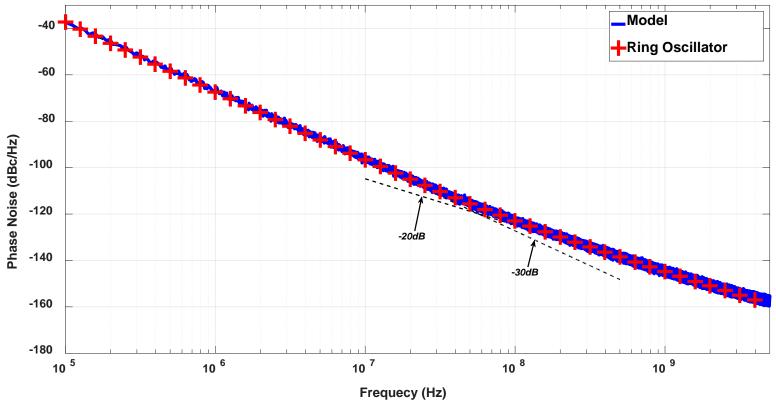
- The model with only flicker noise is used.
- Jitter's variance grows along $\left[\ln\left(\frac{t}{T_0}\right) 0.9151\right]$.
- It is redicted by our theory and formula.

Theory Verification

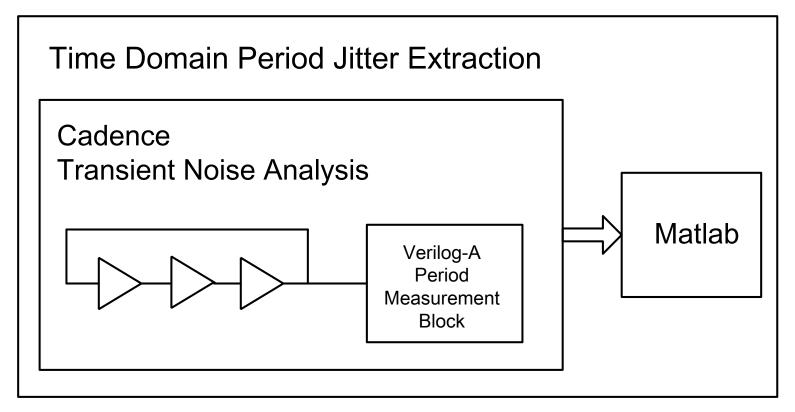


- The variance of the period jitter is fixed.
- The phase noise is predicted by our formula by

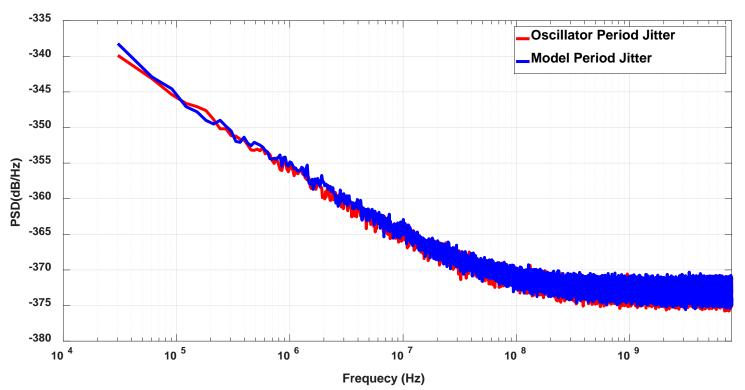
$$L(\Delta f) = \frac{\sigma_{1/f}^2(T_0)}{2\left[\ln\left(\frac{t}{T_0}\right) - 0.9151\right]} \frac{f_0^4}{\Delta f^3}.$$


The simulation results conforms the prediction.

Model Verification with Real Oscillator Circuits


- Parameter Extraction (1.422GHz LC oscillator circuit with about 100KHz noise corner frequency)
 - Thermal noise jitter: $\sigma_{thermal}^2 = L(\Delta f) \frac{\Delta f^2}{f_0^3}$
 - Flicker noise jitter: $\sigma_{1/f}^2(t) = 2\left[\ln\left(\frac{t}{T_0}\right) 0.9151\right] \frac{\Delta f^3}{f_0^4} L(\Delta f)$

Model Verification with Real Oscillator Circuits


- Parameter Extraction (15.911GHz ring oscillator circuit with about 60MHz noise corner frequency)
 - Thermal noise jitter: $\sigma_{thermal}^2 = L(\Delta f) \frac{\Delta f^2}{f_0^3}$
 - Flicker noise jitter: $\sigma_{1/f}^2(t) = 2\left[\ln\left(\frac{t}{T_0}\right) 0.9151\right] \frac{\Delta f^3}{f_0^4} L(\Delta f)$

Further Model Verification with Real Oscillator Circuits

- Extract the period jitter by transient noise analysis
 - Setup: noisemin is 10K, noisefmax is 500G
 - Runtime: 10 days (3) to complete 1ms simulation(server with E5 processor and 16G memory)

Further Model Verification with Real Oscillator Circuits

- Comparison of the period jitter spectrum between
 - Our model (extracted by the link between the phase noise and the jitter)
 - That extracted directly in time domain by the transient noise analysis

Conclusions

- We have detailly discussed and derived the link between jitter and phase noise for the flicker noise.
 - A closed-form analytical expression is given without any approximation.
 - Demonstrate the link between period jitter and phase noise by simulation for the first time.
- Present a time domain behavioral model for oscillators considering the flicker noise.
 - The first work to model the up-converted flicker noise region of the phase noise accurately in time domain
 - Universal and accurate for either LC or ring oscillators
- Two different ways are used to verify the model, both observe excellent agreements.

Thank you!

 Acknowledgements: This research is supported by NSFC (61471011) and R&D projects of Shenzhen city (JCYJ20150331102721193,JCYJ20160229094148396).