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loT, The Next Big Thing!
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As Cisco’s prediction, there will be 50 billion Internet-connected things at the end of this decade, the total things number will be 1.9 trillion in the world. So the penetration is 2.7%, compared with today’s 1.3%.  
The connection speed is increasing from around 150 to 250 things per second by 2020. The rapid rise in such things has a big potential to profoundly affect our daily life. 
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Silicon Vendor Eye the loT

 ARM:
The ARM loT subsystem for Cortex-A, -R, and -M enables companies to simplify the process
and improve time to market. (June, 2015) ARM

* Intel:

The Intel® Quark™ microcontroller brings low-cost connectivity, integration, and compatibility
to the latest 10T applications.
(Intel 10T Insights 2015) intel.

e Samsung:
Samsung revealed a new chip family, Artik 1, Artik 5 and Artik 10, to power the IoT, putting it in
more direct competition with Intel, Qualcomm and others in the quest to connect everything.

(May 2015) w

AMD:

Project SkyBridge, designed to fit the various requirements of loT and embedded solutions, will
feature the new family of APUs and SoCs with AMD's GCN core architecture.

(The new AMD product roadmap in 2015) AMDZI
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Today, most of chip vendors are going to develop such chips and provide solutions with low-cost connectivity, integration, and compatibility to the latest IoT applications, such as ARM Cortex, Intel Quark, Samsung Artik, and AMD SkyBridge. 


“loT Chip Demands

In the future, most new physical objects will be implanted
chips and sensors!
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With industry expectations of billions of such embedded chips, we see a growing demand for high-performance on-chip architectures with the following attributes: small scale, low energy, high security. Security is the top tier concern of IoT devices, since …


Challenges of IoT Chip Design

Challenges and Problems of 1oT Chip Design:

1) AMBA AHB and AXI, Wishbone, OCP, CoreConnect, STBUS Silicore.

0CP<
[’I augmented

» Limited resources for tiny chips — Overhead cost for complex security algorithms
[Wong_TVLSI’12, Kermani_TC’12, Wang_TVLSI’10]

» Define a large number of signals and complex structures

» Transfer data in linear and row major order

Contributions :

A Low-Cost and Low-Power Data Bus (DBUS) which provides three transfer modes:

Block, State, and Linear
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Then we consider the challenges regarding the IoT style chip designs. Traditional on-chip architectures include AMBA AHB and AXI from ARM, Wishbone from Silicore, OCP from OCP-IP, Coreconnect from IBM, and STBus from ST Microelectronics. All of them define a large number of signals and complicated structures in order to expand the flexibility. The implementations based on these architectures consume much power and hardware resources. Additionally, all the bus protocols transfer data in linear and row-major order. However, the block based algorithms have been widely used in multiple areas like image processing, computer vision, and cipher systems. Another top tier concern for IoT embedded chips is security. To leverage limited resource of tiny size chips and overhead costs of complex security mechanisms is a big challenge. 
Therefore, the main contribution of our research is proposing a low cost and low power data bus (DBUS) for IoT embedded chips. Basically, IoT chip design is a balance of a host of requirements that often work again each other.  Low cost and low power are important, but the complex applications increase the IO, slice, and power consumption. One of the most effective ways is to look for a low-cost and low-power data bus that can frame the data transfers differently. That’s the first and main contribution of our works. Our proposed DBUS supports three transfer modes, linear, block, state. Using transfer types separately and efficiently can cut the number of IO and Slice required by the SoC and help optimize the chip size, power, and performance.
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As a dual-bus architecture, IBUS contains a control bus (CBUS) and a data bus (DBUS). There is only one master of the CBUS – the micro-processor, all the other peripherals, interfaces, and application-specific devices located on CBUS are slaves. There is only one slave of DBUS– the DMA connected with memory, all the other devices are DBUS’s masters. 
CBUS is created as a central bus with reduced interface complexity and minimal power consumption. The wire number of CBUS is 69, the number of APB is 103, and the number of AHB is 119. DBUS is created as a high performance and high security data bus. It provides an architectural support for the AES algorithm, which is the dominant symmetric-key arithmetic widely used in industry. For all the non-cipher tests, the data will be bypassed by the engine, otherwise the data should be encrypted or decrypted.  
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More specifically, CBUS is half-duplex bus. It supports Single transfer mode and unpipeline protocol, with one cycle command and one cycle data,. To reduce the interface complexity, the write address, read address, and write data share the same signal. It increase the wire efficiency and simplifies the interconnection. Second, as a single-master bus protocol, CBUS does not need the arbitration, so the command stage takes only one clock cycle. Third, the valid signal is used to indicate the valid data and acknowledge the request, and can also be used to synchronize signals crossing different time domains. Finally, a response timer is defined to detect command errors. If the current response is a timeout, the command is indicated as “ERROR” and must be “RETRIED” or “DISCARDED”.
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DBUS is a full-duplex data bus. It provides the command pre-processing scheme. As shown in this timing diagram, CMD1 is preprocessed before write data complete. Second, the write data can be overlapped with read data as a full-duplex bus. Third, the arbitration and address stage are combined, and the response and data are combined, so only two cycles are consumed except for the data stage. 
The main contribution of DBUS is the novel block and state transfer modes, and also backward compatible with the traditional linear mode, which can be configured by the most two significant bits of len signal. When they are 00, it is in linear mode, 01 in block mode, 10 in state mode .  


“DBUS Linear and Block Modes
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As an example, the most two significant bits of the first memory access are binary “2’b00”, so it is in the linear mode, and all the other bits from 9 to 0 represent the exact transfer size. In this case it is a 16-word linear transfer. For the second case, the most two significant bits are binary “2’b01”, so the second memory access is in the block mode, and the other bits from 9 to 5 represent the block height, and the bits from 4 to 0 represent the block width. In this case it is a 4x4-word block transfer. 


AES Mathematical Preliminary

Cipher(byte in[4*Nb], byte ocut[4*Nb], word w[Nb* (Nr+l)])
begin

byte state[4,Nb] AES Encryption
state = in
AddRoundKey (state, w[0, Nb-1])

for round = 1 step 1 to Nr-1

ShiftRows (state)

AddRoundKey (state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes (state)

ShiftRows (state)

AddRoundKey (state, w[Nr*Nb, (Nr+l)*Nb-1]) . :
Plaintext Ciphertext

out = state State State

end

InvCipher (byte in[4*Nb], byte out[4*Nb], word w[Wb*(Nr+l)])
begin

AES Decryption byte state(4,Nb]
state = in
AddRoundKey (state, W[Nr*Nb, (Nr+l)+*Nb-1])

= = o =1 downto 1
InvShiftRows (state)

Hh
‘o

AddRoundKey (state, w[round*Nb, (round+l)*Nb-1])
InvMixColumns (state)
end for

InvsShiftRows (state)
InvsubBytes (state)
AddRoundKey (state, w[0, Nb-1])

Ciphertext Plaintext
State State end

out = state
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Before discussing the state transfer mode, I briefly introduce the AES algorithm. Basically, AES is a block cipher that process on a 4x4 byte matrix, named as AES state. Each state encryption or decryption includes Nr rounds, and each round contains four transformations, SubBytes, ShiftRows, MixColumns, and AddRoundKyes for cipher, and InvSubBytes, InvShiftRows, InvMixColumns, and AddRoundKyes for inverse cipher.  The novel state transfer mode is optimized based on the ShiftRows and InvShiftRows transformations.     


D]AES Data Sequence

bits: 11:10, 9:0
Data Sequence in Mem Data Sequence in ENC Optimized Memory Access

Data Transfer on DBUS (Cvclically-Shifted Column-Major Order)

Data Sequence in Mem Data Sequence in DEC Optimized Memory Access

Inverse
Cipher

Data Transfer on DBUS (Cyclically-Inverse-Shifted Column-Major Order)
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More specifically, the data sequence for an AES state in memory is from 0 to f. For each cipher round, the first row will be not shifted, the second, third, and fourth rows, will be left shifted by one, two, three bytes, respectively. So the data sequence processed by the AES engine should be 0 to f, 4 to 3, 8 to 7, and c to b for the first, second, third, and fourth columns, respectively. Therefore, the novel state transfer mode is optimized by accessing memory in cyclically-shifted column major order, and then the data transferred on DBUS can be used immediately. In this way the implementations of data buffering and sequence scheduling can be reduced. 
Similarly, for each inverse cipher round, the first row will not be shifted, the second, third, and fourth rows, will be right shifted by one, two, three bytes, respectively. So the data input to the AES engine should  be 0 to7, 4 to b, 8 to f, and e to 3 for the first, second, third, and fourth column. Therefore, the novel state transfer mode is optimized by accessing memory in cyclically-inverse-shifted column major order, and then the data transferred on DBUS can be used immediately.
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As an example, to access two 4x4-byte blocks, two commands are required using the block mode. However, only one command is needed using the state transfer mode. When the data sequence in memory is 0 to f, the read data on DBUS are in the cyclically-shifted column major order, and the write data on DBUS are in the cyclically-inverse-shifted column major order. The most two significant bits of len signal is 2’b10, the other 9 to 0 bits represents the state number. In this case, the current transfer is a 2-state cipher transfer. 
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As a case study, we implement the DBUS DMA as the DUT. In order to evaluate the state transfer performance, we also design an AES engine in this DUT. The arbiter ensures that only one master has access to the DBUS at any one time. The command queue is used to preprocess the commands. The depth of each queue is 4, so totally 8 commands can be stored. And the AES engine is designed using the composite field arithmetic to achieve the maximum operational frequency. 
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Performance Comparison
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Finally, the resource costs, power consumption, and the valid bandwidth have been summarized. 


= :
Performance Comparison (DDAM/XDAM)
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Linear and Block Transfer Contributions:

X. Yang, J. Andrian, “A High Performance On-Chip Bus (MSBUS) Design and Verification,” IEEE

Linear Tests:
e VB:1.13/DE: 79.31%
e SE:1.27/DEE: 1.29

Block Tests:
e VB:1.19/DE: 71.43%
e SE:1.35/DEE: 1.39

Cipher Tests:
« VB:1.30/DE: 66.93%
« SE:1.48/DEE: 1.49

Trans. On VLSI Syst. (TVLSI), Vol. 23, Issue: 7, PP. 1350-1354, Jul. 2014.
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The difference between AXI and DBUS is made clear through the analysis of DDAM/XDMA ratios. The experimental results show that the DBUS based implementations reduce the time and dynamic energy consumption, and achieve higher valid data bandwidth, particularly in the block transfer modes. 
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