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Continuous 3D Printing

 Continuous 3D printing is a recent technical breakthrough in additive
manufacturing [2015]. (Carbon3D)

Two Orders of Magnitude 
on Printing Acceleration

* This picture comes from internet: https://techcrunch.com/2015/08/20/ with-
100m-in-funding-carbon3d-will-make-3d-manufacturing-a-reality/ 4



Principle of Continuous 3D 
Printing (Carbon 3D)

 Dry Part (Prefabrication)
Computing unit slices of
the layer images.

Wet Part (Manufacturing)
Mechanical operations to
fabricate 3D object from
liquid materials.

Speedup of Carbon 3D is 
mainly from Manufacturing

(wet part)
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Prefabrication V.S. 
Manufacturing 

Prefabrication will become the 
bottleneck of continuous 3D printing
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Background (Slicing)

 The task in prefabrication includes three sequential procedures, i.e., slicing, path
planning and support generation. Slicing dominates time efficiency in “dry part”.

 In continuous 3D printing, image-mask-projection based slicing algorithm is
employed. This pixel-independent processing enables massive parallel acceleration.
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Methodology
(Slicing Algorithm Analysis)

 The entire algorithm includes three cascaded modules, i.e., ray-triangle
intersection, trunk sorting and layer extraction.

 The ray-triangle module is to calculate the intersection points between rays on
image pixel center and the triangles from STL file.

 The trunk sorting sorts the out-of-order intersection points by ascending order using
the bubble sorting in the trunk of each pixel.

 The binary value of each pixel on projected images is identified by incremental
updating, so that the topology information is extracted for binary slicing image.

Trunk Sorting takes up a minor part 
of computation
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GPU-Enabled Slicing-I
(Pixelwise Parallel Slicing)

 By the sequential algorithm analysis, we exploit the pixelwise parallelism based on
GPGPU architecture.
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GPU-Enabled Slicing-I
(Pixelwise Parallel Slicing)

 By the sequential algorithm analysis, we exploit the pixelwise parallelism based on
GPGPU architecture.

 The entire processing in all three functional modules for one pixel is assigned to a
specific thread.
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GPU-Enabled Slicing-I
(Pixelwise Parallel Slicing)

 By the sequential algorithm analysis, we exploit the pixelwise parallelism based on
GPGPU architecture.

 The entire processing in all three functional modules for one pixel is assigned to a
specific thread.

 Fully use of precious shared memory on GPU to reduce time-consuming global
memory intersections.

13



GPU-Enabled Slicing-II
(Fully Parallel Slicing)

 PPS still has serial computing components.
 FPS explores the massive thread concurrency
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GPU-Enabled Slicing-II
(Fully Parallel Slicing)

 PPS still has serial computing components.
 FPS explores the massive thread concurrency
 This method increases global memory accessing pattern, but is scalable for

large-size problem.
 The issue of multi-thread memory writing conflict arises and can be addressed

by atomic operation based critical area. 15



Comparison of Two GPU 
Implementations
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Comparison of Two GPU 
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Comparison of Two GPU 
Implementations

 PPS: all tasks in fast shared memory, less global memory access, no multi-thread conflict.
 FPS: recycle-free processing, atomic operation based critical area to address conflict issue.

Massive Parallelism Exists in 
Slicing Algorithm
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Experimental Setup

 We use cycle-accurate simulators for CPU and GPU computing platforms

 Sniper is a typical simulator for x86 architecture and GPGU-Sim is a good
simulating tool to check statistics of GPGPU architecture.

 Sniper is configured as Intel Xeon X5550 with 2.66GHz frequency while
GPGPU-Sim is configured as Nvidia Geforce GTX480 with 700MHz.

 We choose four representative 3D objects: Club, Android, Ring and Bunny.
They have different triangle mesh size, as 3290, 10926, 33730 and 69664.
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Experiment: Time Efficiency

 Fully parallel slicing achieves the best performance in three schemes.
 Considering the processing frequency difference, PPS gains one order of

magnitude improvement and FPS even obtains two orders acceleration. 23



Experiment: Scalability

 We choose three layer numbers: 10, 100 and
1000.

 FPS scheme on GPU can achieve about two
orders time efficiency compared with CPU
case.

 As layer number increases, layer extraction
dominates the entire runtime.

 Trunk Sorting takes a subtle proportion.

 We choose three image resolutions: 128*64,
256*128 and 512*256.

 PPS holds one order of magnitude speedup and
FPS achieves about two orders time efficiency
compared to CPU.

Scalable of both PPS and FPS
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Conclusions

 We investigated slicing algorithm acceleration on GPGPU
architecture for continuous 3D printing.

 We developed pixelwise parallel slicing and fully parallel
slicing implementations.

 Experiments demonstrate the effectiveness and scalability
of our implementation.

In the future:
 We will design new implementations on the new hardware

platform, such as FPGA or more powerful GPU.
 We will exploit pipeline property between prefabrication

and manufacturing.
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Thank you!

Q & A

Address comments to wenyaoxu@buffalo.edu 27
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