
Towards Scalable and Efficient GPU-
Enabled Slicing Acceleration in Continuous 

3D Printing

Aosen Wang1, Chi Zhou2, Zhanpeng Jin3 and Wenyao Xu1

1CSE of SUNY Buffalo
2ISE of SUNY Buffalo

3ECE of SUNY Binghamton

22nd Asia and South Pacific Design Automation Conference 
(ASP-DAC), Chiba, Japan, Jan. 16-19, 2017

1



Motivation01

Background - Slicing02

GPU Acceleration03

Experiments04

Conclusions05

Outline

2



02

03

04

05

Motivation01

Outline

3



Continuous 3D Printing

 Continuous 3D printing is a recent technical breakthrough in additive
manufacturing [2015]. (Carbon3D)

Two Orders of Magnitude 
on Printing Acceleration

* This picture comes from internet: https://techcrunch.com/2015/08/20/ with-
100m-in-funding-carbon3d-will-make-3d-manufacturing-a-reality/ 4



Principle of Continuous 3D 
Printing (Carbon 3D)

 Dry Part (Prefabrication)
Computing unit slices of
the layer images.

Wet Part (Manufacturing)
Mechanical operations to
fabricate 3D object from
liquid materials.

Speedup of Carbon 3D is 
mainly from Manufacturing

(wet part)

5



Prefabrication V.S. 
Manufacturing 

Prefabrication will become the 
bottleneck of continuous 3D printing

6



01

03

04

05

Background - Slicing02

Outline

7



Background (Slicing)

 The task in prefabrication includes three sequential procedures, i.e., slicing, path
planning and support generation. Slicing dominates time efficiency in “dry part”.

 In continuous 3D printing, image-mask-projection based slicing algorithm is
employed. This pixel-independent processing enables massive parallel acceleration.

8



Methodology
(Slicing Algorithm Analysis)

 The entire algorithm includes three cascaded modules, i.e., ray-triangle
intersection, trunk sorting and layer extraction.

 The ray-triangle module is to calculate the intersection points between rays on
image pixel center and the triangles from STL file.

 The trunk sorting sorts the out-of-order intersection points by ascending order using
the bubble sorting in the trunk of each pixel.

 The binary value of each pixel on projected images is identified by incremental
updating, so that the topology information is extracted for binary slicing image.

Trunk Sorting takes up a minor part 
of computation

9



01

02

04

05

GPU Acceleration03

Outline

10



GPU-Enabled Slicing-I
(Pixelwise Parallel Slicing)

 By the sequential algorithm analysis, we exploit the pixelwise parallelism based on
GPGPU architecture.

11



GPU-Enabled Slicing-I
(Pixelwise Parallel Slicing)

 By the sequential algorithm analysis, we exploit the pixelwise parallelism based on
GPGPU architecture.

 The entire processing in all three functional modules for one pixel is assigned to a
specific thread.

12



GPU-Enabled Slicing-I
(Pixelwise Parallel Slicing)

 By the sequential algorithm analysis, we exploit the pixelwise parallelism based on
GPGPU architecture.

 The entire processing in all three functional modules for one pixel is assigned to a
specific thread.

 Fully use of precious shared memory on GPU to reduce time-consuming global
memory intersections.

13



GPU-Enabled Slicing-II
(Fully Parallel Slicing)

 PPS still has serial computing components.
 FPS explores the massive thread concurrency

14



GPU-Enabled Slicing-II
(Fully Parallel Slicing)

 PPS still has serial computing components.
 FPS explores the massive thread concurrency
 This method increases global memory accessing pattern, but is scalable for

large-size problem.
 The issue of multi-thread memory writing conflict arises and can be addressed

by atomic operation based critical area. 15



Comparison of Two GPU 
Implementations

16



Comparison of Two GPU 
Implementations

17



Comparison of Two GPU 
Implementations

18



Comparison of Two GPU 
Implementations

19



Comparison of Two GPU 
Implementations

 PPS: all tasks in fast shared memory, less global memory access, no multi-thread conflict.
 FPS: recycle-free processing, atomic operation based critical area to address conflict issue.

Massive Parallelism Exists in 
Slicing Algorithm

20



01

02

03

05

Experiments04

Outline

21



Experimental Setup

 We use cycle-accurate simulators for CPU and GPU computing platforms

 Sniper is a typical simulator for x86 architecture and GPGU-Sim is a good
simulating tool to check statistics of GPGPU architecture.

 Sniper is configured as Intel Xeon X5550 with 2.66GHz frequency while
GPGPU-Sim is configured as Nvidia Geforce GTX480 with 700MHz.

 We choose four representative 3D objects: Club, Android, Ring and Bunny.
They have different triangle mesh size, as 3290, 10926, 33730 and 69664.

22



Experiment: Time Efficiency

 Fully parallel slicing achieves the best performance in three schemes.
 Considering the processing frequency difference, PPS gains one order of

magnitude improvement and FPS even obtains two orders acceleration. 23



Experiment: Scalability

 We choose three layer numbers: 10, 100 and
1000.

 FPS scheme on GPU can achieve about two
orders time efficiency compared with CPU
case.

 As layer number increases, layer extraction
dominates the entire runtime.

 Trunk Sorting takes a subtle proportion.

 We choose three image resolutions: 128*64,
256*128 and 512*256.

 PPS holds one order of magnitude speedup and
FPS achieves about two orders time efficiency
compared to CPU.

Scalable of both PPS and FPS

24



01

02

03

04

Conclusions05

Outline

25



Conclusions

 We investigated slicing algorithm acceleration on GPGPU
architecture for continuous 3D printing.

 We developed pixelwise parallel slicing and fully parallel
slicing implementations.

 Experiments demonstrate the effectiveness and scalability
of our implementation.

In the future:
 We will design new implementations on the new hardware

platform, such as FPGA or more powerful GPU.
 We will exploit pipeline property between prefabrication

and manufacturing.

26



Thank you!

Q & A

Address comments to wenyaoxu@buffalo.edu 27

mailto:wenyaoxu@buffalo.edu

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27

