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* Increasing number of processor cores O SR
= Enabled by technology scaling | |
= Motivated by the failure of Dennard scaling
= Happen in both high-performance processors (CMP) and

embedded systems (MPSOC) Intel’s Polaris chip: 8x10 mesh
= Tilera TILE-Pro64 MPSoC (64-core) B 2 B
= Intel Xeon Phi 7210 (72-core) 1 W= '"}B
= Intel Polaris chip (80-core) T I _. == Eﬁ

» EZchip/ Tilera MX-100 (100-core)

» Energy efficiency problem of multi-core system
= Ever-increasing number of cores
= Complexity of emerging application workloads

Ezchip MX-100: 5x5 mesh
(4 corelTile)
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* Power dissipation sources

= Static power

= Dynamic power: P, = aCV?*f

" Low power techniques

"= Power gating

* Dynamic voltage and frequency scaling (DVFS)

= DVFS control and schedule

= Adaptively tune operating points (V/ F level) for
each core based on runtime workload conditions

= DVFS schedule is NP-hard problem

= Solutions:

= Reactive ways: e.g. Linux OS on-demand
* Proactive ways: e.g. Heuristics and Learning

based methods
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= Related work and motivation

» Reinforcement learning (RL) based power management

» Modular RL for multicore energy efficiency optimization

» Experimental results

= Conclusion and future work
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= Ad-hoc and heuristic methods

» Workload phase-based VF control in awareness of DVFS
latency. [1]

» Developed and analyzed some DVFS algorithms based on
per-core or chip-wide DVFS. [2][3]

» Supervised learning-based methods

» Expert-based online allocation method based on online
decision-tree algorithm. [4]

» Supervised learning based on Bayesian classifier to
predict system state and select actions. [7]

= Multinomial logistic regression algorithm to predict the
best VF-level based on workload features under workload
uncertainties. [10]
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» Reinforcement learning-based power management for

single-core systems
» Model-free Q-learning algorithm for dynamic power
management. [6]

» Add a second learning layer to get the parameters more
accurately for traditional QL. [9]

» Temporal Difference RL and a Bayesian classifier to improve

state-prediction. [12]

» Reinforcement learning-based power management for
multi-

core systems

= Challenge:

= Complexity of the environment increases exponentially
with number of cores.

= Solutions:

4/12/2017

» Learning transfer among cores by sharing Q-table. [11]
» Use a neural network to approximate the Q-table. [14]
= Each core run Q-learning independently.[15][16]
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» Impacts of inter-core relationship and
dependency

= Complicated execution causality for emerging
multi-task/ thread applications.

» Locally learned policy might not benefit the global
system energy-efficiency.

Modular reinforcement learning (MRL)
based DVFS control strategy

= Consider the inter-core relationship
* Incurring polynomial amount of overhead

4/12/2017 BDSL, HKUST
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* Reinforcement learning

» | earns appropriate behavior by trail-and-error
method while interacting with the dynamic
environment.

= Key elements
= Agent: action-space.
* Environment: state-space.
* Reward function for action-state pairs.

» Reward feedback for agent to learn the effect of its
behavior.

* FHinds an appropriate policy to achieve a certain
goal.

4/12/2017 BDSL, HKUST
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» Q-learning (QL) background

= One of the most popular algorithm in RL.

= Solve a RL problem without having to know the state- m

transition model of the environment

* QL basics a
= Q-value for each state-action pair stored in a table 0,(s,a)
= Q-value updating rule:
Q+1(s,a) Ry (s, a)
“ Qu(s, @) + a,(s,a) - [(R(s.@) + ¥ - max Q(s', @) ) — Qu(s, @)
a a;(s,a)
» Exploration vs. exploitation ,

* Tradeoff between convergence speed and system
performance

4/12/2017 BDSL, HKUST

Last epoch state / current
epoch state

Last epoch action

Q-value for state s and
action a at last epoch t

Reward for state s and
action a for last epoch t

Learning rate for last epoch
t

Discount factor



» QL-based DVFS control

Q-learning T System monitors
aramater State/reward-calculating _ (HW, SW, 0S)
= Control knob: Per-core DVFS 9 P
= Agent: system power controller - {Emi:::;; 7
* Environment: processor core system N
Qrtable \ 2 *
. y . V/F levers
» System formulation - Visdedton W) 0

DVFS-controller (agent)
= State-space: 2D tuple s, = (hy,
P P t ( t 'ut) Overview of QL based DVFS control

Action-space: available V/ F levels

_ h, « At each epoch, generate a random

» Reward function: r; =
energys ! number_brramgedsin (0,1);
" Exploration vs. Exploitation: e If a J¥HBEEE an action randomly
= e-greedy || > expﬂord"ti@ﬁ)ﬁydes L1$_stalled;
= o and e will decay with the visiting times of the |, OtherW|se NERLBLEY~HE Sk o t action
state
(exploitation).

4/12/2017 BDSL, HKUST
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= Difficulty of applying QL for multicore system "=~

Physical State Action

Environment

= Monolithic QL -> state-space explosion with exponentially
increased Q-table size 0(|S|N - |[A|M) PRI

* Independent/local QL -> ignoring inter-core relationship
results in deteriorated the quality of the policy learned

Arbiter

= MRL [17] background
* Target multi-aim or multi-agent optimization problem

* Polynomial memory overhead depending on modularity
= A balance between memory overhead and learning quality

Mod1

* |ntuitively fitting the power management problem in
multicore system

The Agent
Modular architecture overview [17]

4/12/2017 BDSL, HKUST 11



S * Modularity (modular structuring)
-controller
(Agent-i) — = The number of modules for each agent : 2;
) [} 4
/Moduled Vodules odule I = State space of each module
= Module-1: state of itself;
= Module-2: state of the most relavate core;
v \& — — = e / Joint state of all

Monolithic oS|IV - 1AM
mom [ comomoemsmion | (s 141
| States of Local-core
Env. . i . .

Local state and one
Thiswork  most relevant core O(N - |S|-|A]D
state

Overview of MQL based adaptive DVFS
control mechanism
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(actuator)

Env.

DVFS-controller
(Agent-i)

{

——)

Module-1

N

Module-2
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Module-M

Overview of MQL based adaptive DVFS

control mechanism
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» Mediation strategy

= Coordinates the learned policy of different
modules;

» Requirement: simple for online control
= Two widely used algorithm:

= Top-Value -> winner-take-all

al = argmax{max Q% (Stij ,ah)}
aleAl
= Greatest-Mass (GM) -> majority-voting
M

al = argmax » QY (Sé’ ,ab)
aleAl =

13



Algorithm 1 Proposed Modular Q-Learning Based DVFS
control algorithm.

Require: Q-table QT (s, a),

Q-Learning parameters «, v, €,

_ @: . num_cycles_L1$_stalled

num_busy_cycles

1: // main Iearning loop.
2: when reaching a learning-epoch ¢ do
3:  for all agent-i in parallel do

e AN A

o o

10:
11:
12:
13:
14:
15:

for all module-j in agent-i
s; = calculate_state_id(ut, h
r; = calculate_reward(ht.et))

a) Information from _| @: num_busy_cycles "
> environment time_elapsed rp=—

energy;
energy consumption

QTij (Slasta alast) =

update_q_value(QT" (Siast, Arast), St Tt, )

N

end for
(Fand_action = e-greedy(e) "\
if rand_action is true then

a; = random_action(A)

> b) Calculate states and rewards for each module in each agent.

\‘c) Update Q-value:
Qt+1(S; a) < Qt(s' Cl) + at(s, a) : [(Rt(S, a) + )y maaX Q(S,,Cl)) - Qt(S; Cl)]

else

ai = great_mass(QT" (s, a))
end if
@sue_action(ai) )

16: end 10T
17: end when

4/12/2017

»d) Exploration vs. exploitation (e-greedy algorithm):
« Exploration: choose an action randomly;
« Exploitation: mediation among multiple modules.

BDSL, HKUST 14



= Setups
» Homogeneous MPSoC with mesh-based NoC, JADE simulator [19]

» Hve real applications from COSMIC benchmark suit[21]
» RS-dec, RS-enc, FFT, US, LDPC

» Power model based on McPAT [20]

= System assumptions

» Fve operating VF levels:
0.55V/ 1.4GHz, 0.5V/ 1.2GHz, 0.45V/ 1GHz, 0.4V/ 800MHz and 0.35V/ 600MHz

= BEvaluation:

. .. ht 1
] - ) = oc ——)°¢
Metrics: energy eff|C|ency. Tt energy: ( EDP)'

= Compared with individual learning method.

4/12/2017 BDSL, HKUST 15



» Energy-efficiency improvement for different applications

« On-average 14% energy efficiency improvement

1.3 BN Overall-average |- -
Bl First-100-average

s After-100-average

- -
. .
= ]
T T

Normalized energy-efficiency

0.9
0.8
0.7
0.6
RS-dec RS-enc FFT us LDPC
Energy-efficiency improvement in 32-core system
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» Energy-efficiency improvement for different applications
» Faster convergence and better final policy learned
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» Energy-efficiency improvement for systems of different scales
* On-average 12.6% better energy-efficiency over all four scales

1.3
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i Bl First-100-average

By .2 [ W After-100-average | -
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32-core

Energy-efficiency improvement for different system scales
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» Conclusion
* Propose a Modular Reinforcement Learning based framework for DVFS control in multicore
system to improve system energy-efficiency.
= Achieve globally optimized DVFS control policy with incurring reasonable amount of
overhead.
» Experimental results shows the effectiveness and advantage of the proposed method over
the individual local RL scheme.

* Future work
» Exploration of different modular structures and mediation strategies.

= Adaptively constructing modular structures based on application knowledge and OS
scheduling information.

4/12/2017 BDSL, HKUST 19
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