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Energy E fficient Multi-core System

 Increasing number of processor cores
 Enabled by technology scaling
 Motivated by the failure of Dennard scaling
 Happen in both high-performance processors (CMP) and 

embedded systems (MPSoC)
 Tilera TILE-Pro64 MPSoC (64-core)
 Intel Xeon Phi 7210 (72-core)
 Intel Polaris chip (80-core)
 EZchip/ Tilera MX-100 (100-core) 

Energy efficiency problem of multi-core system
 Ever-increasing number of cores
 Complexity of emerging application workloads

4/12/2017 BDSL, HKUST 2

Intel’s Polaris chip: 8x10 mesh

Ezchip MX-100: 5x5 mesh 
(4 core/Tile) 



Low Power Techniques
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 Power dissipation sources
 Static power
 Dynamic power: 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = α𝐶𝐶𝑉𝑉2𝑓𝑓

 Low power techniques
 Power gating
 Dynamic voltage and frequency scaling (DVFS)

 DVFS control and schedule
 Adaptively tune operating points (V/ F level) for 

each core based on runtime workload conditions
 DVFS schedule is NP-hard problem
 Solutions:

 Reactive ways: e.g. Linux O S on-demand
 Proactive ways: e.g. Heuristics and Learning 

based methods
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Intel Haswell processor with on-chip regulators
[DiBene II, APEC’10]

Performance vs. Power of two DVFS 
granularity

[Kim, HPCA’08]



Outl ine

 Related work and motivation

 Reinforcement learning (RL) based power management

Modular RL for multicore energy efficiency optimization

 Experimental results

 Conclusion and future work
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Previous Works on Power Management

Ad-hoc and heuristic methods
 Workload phase-based VF control in awareness of DVFS

latency. [1]
 Developed and analyzed some DVFS algorithms based on

per-core or chip-wide DVFS. [2][3]

Supervised learning-based methods
 Expert-based online allocation method based on online

decision-tree algorithm. [4]
 Supervised learning based on Bayesian classifier to

predict system state and select actions. [7]
 Multinomial logistic regression algorithm to predict the

best VF-level based on workload features under workload
uncertainties. [10]
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Power saving vs. perf degradation for the 
three policies [2]

DVFS control strategy proposed by [10]



Previous Works on Power Management
 Reinforcement learning-based power management for 

single-core systems 
 Model-free Q-learning algorithm for dynamic power 

management. [6]
 Add a second learning layer to get the parameters more 

accurately for traditional QL. [9]
 Temporal Difference RL and a Bayesian classifier to improve 

state-prediction. [12]
 Reinforcement learning-based power management for 

multi-core systems 
 Challenge: 

 Complexity of the environment increases exponentially 
with number of cores.

 Solutions:
 Learning transfer among cores by sharing Q-table. [11]
 Use a neural network to approximate the Q-table. [14]
 Each core run Q-learning independently.[15][16]
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QL power management diagram [9]

Local QL and global controller [15]



Motivation Example

 Impacts of inter-core relationship and 
dependency
 Complicated execution causality for emerging 

multi-task/ thread applications.
 Locally learned policy might not benefit the global 

system energy-efficiency.

Modular reinforcement learning (MRL) 
based DVFS control strategy

 Consider the inter-core relationship
 Incurring polynomial amount of overhead
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Inter-core communication of two 
workloads [21]

Sample motivation example showing the 
impact of task dependency



Reinforcement Learning Basics

Reinforcement learning
 Learns appropriate behavior by trail-and-error 

method while interacting with the dynamic 
environment.
 Key elements
 Agent: action-space.
 Environment: state-space.
 Reward function for action-state pairs.

 Reward feedback for agent to learn the effect of its 
behavior.
 Finds an appropriate policy to achieve a certain 

goal.
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Learning Agent

Environment

Perception
(s)

Actions 
(a)

Reward 
r(s,a)

Reinforcement learning flow



Q-L earning A lgorithm
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Q-learning (QL) background
 One of the most popular algorithm in RL.
 Solve a RL problem without having to know the state-

transition model of the environment

QL basics
 Q-value for each state-action pair stored in a table
 Q-value updating rule:
𝑸𝑸𝒕𝒕+𝟏𝟏 𝒔𝒔,𝒂𝒂
← 𝑸𝑸𝒕𝒕 𝒔𝒔,𝒂𝒂 + 𝜶𝜶𝒕𝒕 𝒔𝒔,𝒂𝒂 � [ 𝑹𝑹𝒕𝒕 𝒔𝒔,𝒂𝒂 + 𝜸𝜸 � 𝒎𝒎𝒎𝒎𝒎𝒎

𝒂𝒂
𝑸𝑸(𝒔𝒔′,𝒂𝒂) −𝑸𝑸𝒕𝒕(𝒔𝒔,𝒂𝒂)]

 Exploration vs. exploitation
 Tradeoff between convergence speed and system 

performance

Notations Description
𝑠𝑠 /  𝑠𝑠′ Last epoch state /  current 

epoch state

𝑎𝑎 Last epoch action

𝑄𝑄𝑡𝑡 𝑠𝑠, 𝑎𝑎 Q-value for state s and 
action a at last epoch t

𝑅𝑅𝑡𝑡 𝑠𝑠, 𝑎𝑎 Reward for state s and 
action a for last epoch t

𝛼𝛼𝑡𝑡 𝑠𝑠, 𝑎𝑎 Learning rate for last epoch 
t

𝛾𝛾 Discount factor



DVFS Control  Problem Formulation
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QL-based DVFS control
 Control knob: Per-core DVFS
 Agent: system power controller
 Environment: processor core system 

System formulation
 State-space: 2D tuple 𝑠𝑠𝑡𝑡 = (ℎ𝑡𝑡 ,𝜇𝜇𝑡𝑡)
 Action-space: available V/ F levels

 Reward function: 𝑟𝑟𝑡𝑡 = ℎ𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑡𝑡

 Exploration vs. Exploitation:
 𝜖𝜖-greedy 

 𝛼𝛼 and 𝜖𝜖 will decay with the visiting times of the 
state

Overview of QL based DVFS control

• At each epoch, generate a random
number 𝑎𝑎 ranged in (0,1);

• If 𝑎𝑎 < ε , choose an action randomly
(exploration);

• O therwise, choose the best action
(exploitation).



Modular Reinforcement Learning
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Difficulty of applying QL for multicore system
 Monolithic QL -> state-space explosion with exponentially 

increased Q-table size 𝑂𝑂( 𝑆𝑆 𝑁𝑁 � 𝐴𝐴 𝑁𝑁)
 Independent/ local Q L -> ignoring inter-core relationship 

results in deteriorated the quality of the policy learned

MRL [17] background
 Target multi-aim or multi-agent optimization problem
 Polynomial memory overhead depending on modularity
 A balance between memory overhead and learning quality
 Intuitively fitting the power management problem in 

multicore system Modular architecture overview [17]



MRL for Multicore System Power Management
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Modularity (modular structuring)
 The number of modules for each agent : 2; 
 State space of each module

 Module-1: state of itself;
 Module-2: state of the most relavate core;

Structure
Name Description Total Table Size

Monolithic Joint state of all 
cores 𝑂𝑂( 𝑆𝑆 𝑁𝑁 � 𝐴𝐴 𝑁𝑁)

Individual States of Local-core 
and every other core

𝑂𝑂(𝑁𝑁 � |𝑆𝑆| � |𝐴𝐴|)

This work
Local state and one 
most relevant core 

state
𝑶𝑶(𝑵𝑵 � |𝑺𝑺| � |𝑨𝑨|)Overview of MQL based adaptive DVFS 

control mechanism



MRL for Multicore System Power Management
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Overview of MQL based adaptive DVFS 
control mechanism

Mediation strategy
 Coordinates the learned policy of different 

modules;
 Requirement: simple for online control
 Two widely used algorithm:

 Top-Value -> winner-take-all

𝑎𝑎𝑡𝑡𝑖𝑖 = argmax
𝑎𝑎𝑖𝑖∈𝐴𝐴𝑖𝑖

{max
𝑗𝑗
𝑄𝑄𝑖𝑖𝑖𝑖(𝑠𝑠𝑡𝑡

𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖)}

 Greatest-Mass (GM) -> majority-voting

𝑎𝑎𝑡𝑡𝑖𝑖 = argmax
𝑎𝑎𝑖𝑖∈𝐴𝐴𝑖𝑖

�
𝑗𝑗=1

𝑀𝑀

𝑄𝑄𝑖𝑖𝑖𝑖(𝑠𝑠𝑡𝑡
𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖)



MRL for Multicore System Power Management
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b) Calculate states and rewards for each module in each agent.

𝑒𝑒𝑡𝑡 : energy consumption

ℎ𝑡𝑡 =
𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

µ𝑡𝑡 = 1 −
𝑛𝑛𝑛𝑛𝑛𝑛_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝐿𝐿𝐿𝐿_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

a) Information from 
environment 𝑟𝑟𝑡𝑡 =

ℎ𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑡𝑡

c) Update Q-value: 
𝑄𝑄𝑡𝑡+1 𝑠𝑠,𝑎𝑎 ← 𝑄𝑄𝑡𝑡 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼𝑡𝑡 𝑠𝑠, 𝑎𝑎 � [ 𝑅𝑅𝑡𝑡 𝑠𝑠,𝑎𝑎 + 𝛾𝛾 � max

𝑎𝑎
𝑄𝑄(𝑠𝑠′,𝑎𝑎) − 𝑄𝑄𝑡𝑡(𝑠𝑠, 𝑎𝑎)]

d) Exploration vs. exploitation (ε-greedy algorithm):
• Exploration: choose an action randomly;
• Exploitation: mediation among multiple modules.



Experiment Results and Analysis
Setups
 Homogeneous MPSoC with mesh-based NoC, JADE simulator [19]
 Five real applications from COSMIC benchmark suit[21]

 RS-dec, RS-enc, FFT, US, LDPC 
 Power model based on McPAT [20]
 System assumptions

 Five operating VF levels: 
0.55V/ 1.4GHz, 0.5V/ 1.2GHz, 0.45V/ 1GHz, 0.4V/ 800MHz and 0.35V/ 600MHz 

 Evaluation:
 Metrics: energy efficiency: 𝑟𝑟𝑡𝑡 = ℎ𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑡𝑡
(∝ 1

EDP
);

 Compared with individual learning method.
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Energy Efficiency Improvement

Energy-efficiency improvement for different applications
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Energy-efficiency improvement in 32-core system

• On-average 14% energy efficiency improvement



Energy Efficiency Improvement

Energy-efficiency improvement for different applications
 Faster convergence and better final policy learned
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Energy-efficiency improvement in 32-
core system

EDP transient analysis for US 
application

V/F adopting percentage



Scalabil ity Evaluation
Energy-efficiency improvement for systems of different scales

 On-average 12.6% better energy-efficiency over all four scales
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Energy-efficiency improvement for different system scales



Conclusion and Future Work

Conclusion
 Propose a Modular Reinforcement Learning based framework for DVFS control in multicore 

system to improve system energy-efficiency.
 Achieve globally optimized DVFS control policy with incurring reasonable amount of 

overhead.
 Experimental results shows the effectiveness and advantage of the proposed method over 

the individual local RL scheme.

 Future work
 Exploration of different modular structures and mediation strategies.
 Adaptively constructing modular structures based on application knowledge and OS 

scheduling information.
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