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The renaissance of neural network

• Big data & powerful machine (Moore’s Law)
• The increasing scale of neural networks in ImageNet visual 

recognition challenge
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Three elementary layers in neural network 

• Convolutional layer (CONV): mostly computation-intensive
• Pooling layer (POOL)
• Fully-connected layer (FC): mostly memory-intensive
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Related work

• Hash Neural Network[1]: map real weights into virtual weights 
through hash function

• Deep compression[2]: map real weights into virtual weights through 
cluster index (obtained from k-means)

Hash neural network Deep compression

[1] Chen W, Wilson J T, Tyree S, et al. Compressing neural networks with the hashing trick[J]. 
[2] Han S, Mao H, Dally W J. Deep compression: Compressing deep neural network with pruning, trained 
quantization and huffman coding[J]. 



Potential issues of hash neural network and 
deep compression

• No spatial locality in hashed neural network

• Deep compression: additional storage of cluster index 

Organize the weights in adjacent 
locations in memory

Scattering hash map destroys the 
spatial locality in memory access
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Our approach: blocked hash neural network

• Basic idea: preserve the spatial locality in hash neural network 
through the blocked constraint

• No cluster index storage is required since the mapping is through a 
predetermined hash functions

• Real weight block size b determines the tradeoff of locality and 
performance degradation
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• Real weights in block 1 only serve for first 2 rows in virtual weights
• Real weights in block 2 only serve for last 2 rows in virtual weights  



Training of blocked hash neural network

• Backpropagation into the real weights, 
derived from chain rules
𝜕𝜕ℒ

𝜕𝜕𝑊𝑊𝑘𝑘
(𝑙𝑙) = ∑𝑖𝑖,𝑗𝑗

𝜕𝜕ℒ

𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖
(𝑙𝑙)

𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖
(𝑙𝑙)

𝜕𝜕𝑊𝑊𝑘𝑘
(𝑙𝑙) =

∑𝑖𝑖,𝑗𝑗 𝛿𝛿𝑖𝑖𝑖𝑖
(𝑙𝑙)1{ℎ 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 𝑘𝑘}

where 𝛿𝛿 is the error term which can be 
obtained from backpropagation, and 1{⋅
} is the indicator function

• Training flow of blocked hash neural 
network

SGD
Real 

weight W

Preditermin
ed hash 

function h

Randomly 
initialized real 

weights W

Virtual weights 
V=Wh

Feedforward 
pass: o = f(Vi)

Backward pass: 
dV = do f’i

Chain rules dW



Hardware acceleration of blocked hash neural 
network: basic arithmetic operation

• The basic operation of feedforward pass is a matrix vector operation

• Loop tiling the current real weight block in the ‘cache’ memory since 
we block the hash neural network

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑊𝑊ℎ
𝑏𝑏𝑏𝑏𝑏𝑏



Hardware acceleration of blocked hash neural 
network: loop tiling

• Two-level memory hierarchy
• On-chip SRAM: store all the real weights W (we can store weights on-chip 

since we compress the weights a lot)
• On-chip register file: store only the current active real weight block

• Loop tiling size T𝑗𝑗 = 𝑏𝑏/𝑐𝑐𝑐𝑐, where b is the real block size and cr is the 
desired compression rate 

Within the tiled loop, 𝑉𝑉𝑖𝑖𝑡𝑡𝑗𝑗
comes from the same block



Hardware acceleration of blocked hash neural 
network: loop unrolling 

• Unroll the loop to parallelize the computation

To be computed in p 
PEs
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Hardware architecture of blocked hash neural 
network

• 5 pipeline stages
• Refresh & Hash: fetch the 

real weights from on-chip 
SRAM to local register file & 
hash computation for index

• XBAR & RE Inact: crossbar 
access the corresponding real 
weights & read the input 
activations 

• Mult: compute the 
multiplication in parallel 

• Merge: compute the 
accumulation

• ReLU & WB: nonlinear 
computation & write back to 
output activation

                           



Simplified hash function for hardware 
implementation

• A general hash function is complex: large area & multiple cycles
• A simplified hash function is tolerable due to our simulation results

𝑉𝑉𝑖𝑖𝑖𝑖
(𝑙𝑙) = 𝑊𝑊ℎ 𝑖𝑖,𝑗𝑗,𝑙𝑙

𝑙𝑙 𝜉𝜉(𝑖𝑖, 𝑗𝑗, 𝑙𝑙)
• ℎ 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 :𝑁𝑁3 → {1, 2, … , 𝑏𝑏} determines the mapping procedure. Uniformly 

distributes the index within range 1 to b:
ℎ 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 𝑖𝑖⨁𝑗𝑗⨁𝑙𝑙 %𝑏𝑏

• 𝜉𝜉 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 :𝑁𝑁3 → {−1, +1} removes the bias of hash inner-product. Randomly 
generates the ±1:

𝜉𝜉 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿%2

           

Hardware block of hash generator
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Simulation setup

• Algorithm level verification on MATLAB
• Verify the performance degradation under different compression rates
• Offline train using stochastic gradient descent (SGD)
• Numerical gradient check to guarantee the backpropagation is correct
• Fixed point simulation of hardware architecture

• Hardware implementation by Verilog
• Synthesize, place and routing using Xilinx Vivado
• Prototype in Xilinx FPGA VC709

• Evaluate performance over 3 different datasets with variant neural 
network architecture only consisting of FC layers

• Caltech 101 silhouettes
• Handwritten MNIST
• Handwritten MNIST challenging variant ROT



Algorithm-level compression performance

• Five neural network compression schemes
• Equivalent neural net: plain neural network with equiv. size 
• Deep compression
• Conventional hash network: with ideal hash function[*]

• Blocked hash network: hash network with blocked constraints
• BHNN: hardware-mimic blocked hash neural network

[*] Ideal hash function: open source xxhash @ https://github.com/Cyan4973/xxHash

https://github.com/Cyan4973/xxHash


Algorithm-level compression performance 
(cont.)

• Dataset: MNIST
• Over 2 different neural network architectures 
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Algorithm-level compression performance 
(cont.)

• Dataset: Caltech101
• Over 2 different neural network architectures 

                                  



Algorithm-level compression performance 
(cont.)

• Dataset: ROT
• Over 2 different neural network architectures 

                                  



Hardware implementation results  

• Micro-architectural parameters on Xilinx VC709

• Resource utilization

Micro-architectural parameters Value

Parallelism p 32

Real block size b 64

Quantization scheme Q0.15 (16-bit)

Compression ratio 1/16

Clock freq 100MHz

Resource DSP BRAM LUT FF

Used 32 939 17671 13271

Utilization (%) 0.89 63.88 4.08 1.53



Hardware acceleration results 

• Baseline: conventional hash (w/o spatial locality) on CPU & GPU

• FPGA has a speedup of over 20x and 3~5x over CPU and GPU under 
various neural network architectures

Arch / Platform Intel i7 6700HQ NVIDIA GTX 960M Xilinx VC709

784-1000-10 5.54ms / image 1.17ms / image 0.25ms / image

784-1000-1000-1000-
10

20.19ms / image 2.98ms / image 0.89ms / image

784-1000-101 6.31ms / image 1.25ms / image 0.28ms / image

784-1000-1000-1000-
101

20.96ms / image 3.05ms / image 0.92ms / image
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Conclusion

• A novel compression algorithm for neural network
• Spatial locality for the conventional hash neural network
• Maintain the same performance with the conventional hash neural network 

and outperform the “deep compression” scheme under heavy compression 
region

• A hardware accelerator catering for the blocked hash neural network
• Two-level memory hierarchy taking advantage of the spatial locality
• Hardware simplification of the general hash function
• Achieves ~20x and ~4x speedup compared with CPU and GPU
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