
BHNN: a Memory-Efficient
Accelerator for Compressing Deep

Neural Network with Blocked
Hashing Techniques

Jingyang Zhu1, Zhiliang Qian 2* , and Chi-Ying Tsui1

1 The Hong Kong University of Science and Technology, Hong Kong
2 Shanghai Jiao Tong University, Shanghai, China

IEEE/ACM ASP-DAC 2017, 19th Jan., 2017, Chiba

Outline

• Introduction
• Related work
• Blocked hash neural network: algorithm
• Blocked hash neural network: hardware architecture
• Experiment results
• Conclusion

The renaissance of neural network

• Big data & powerful machine (Moore’s Law)
• The increasing scale of neural networks in ImageNet visual

recognition challenge

0

5

10

15

20

25

30

ILSVRC'15 ResNet ILSVRC'14
GoogleNet

ILSVRC'14
VGGNet

ILSVRC'13 ZFNet ILSVRC'12
AlexNet

ILSVRC'11 ILSVRC'10
0

20

40

60

80

100

120

140

160

Revolution of Depth in ILSVRC

Top-5 classification error (%) No. layers
Pre Neural Network

(e.g. HOG, DPM)
Neural Network Approach

Top-5 error rate (%
)

Depth of neural net

Three elementary layers in neural network

• Convolutional layer (CONV): mostly computation-intensive
• Pooling layer (POOL)
• Fully-connected layer (FC): mostly memory-intensive

0

20000000

40000000

60000000

80000000

100000000

120000000

No. of parameters in VGGNet-16 [ILSVRC 2014]

Take up 90% parameters (~120M parameters)

It is important to compress the
FC in neural network for
embedded systems

Outline

• Introduction
• Related work
• Blocked hash neural network: algorithm
• Blocked hash neural network: hardware architecture
• Experiment results
• Conclusion

Related work

• Hash Neural Network[1]: map real weights into virtual weights
through hash function

• Deep compression[2]: map real weights into virtual weights through
cluster index (obtained from k-means)

Hash neural network Deep compression

[1] Chen W, Wilson J T, Tyree S, et al. Compressing neural networks with the hashing trick[J].
[2] Han S, Mao H, Dally W J. Deep compression: Compressing deep neural network with pruning, trained
quantization and huffman coding[J].

Potential issues of hash neural network and
deep compression

• No spatial locality in hashed neural network

• Deep compression: additional storage of cluster index

Organize the weights in adjacent
locations in memory

Scattering hash map destroys the
spatial locality in memory access

Outline

• Introduction
• Related work
• Blocked hash neural network: algorithm
• Blocked hash neural network: hardware architecture
• Experiment results
• Conclusion

Our approach: blocked hash neural network

• Basic idea: preserve the spatial locality in hash neural network
through the blocked constraint

• No cluster index storage is required since the mapping is through a
predetermined hash functions

• Real weight block size b determines the tradeoff of locality and
performance degradation

0.3 1.7 0.3 1.7

0.3 0.3 1.7 0.3

0.8 -0.6 -0.6 -0.6

-0.6 0.8 0.8 -0.6

Virtual weights V Hash index h

1 2 1 2

1 1 2 1

1 2 2 2

2 1 1 2

Real weights W

0.3 1.7

0.8 -0.6

Block 1

Block 2

• Real weights in block 1 only serve for first 2 rows in virtual weights
• Real weights in block 2 only serve for last 2 rows in virtual weights

Training of blocked hash neural network

• Backpropagation into the real weights,
derived from chain rules
𝜕𝜕ℒ

𝜕𝜕𝑊𝑊𝑘𝑘
(𝑙𝑙) = ∑𝑖𝑖,𝑗𝑗

𝜕𝜕ℒ

𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖
(𝑙𝑙)

𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖
(𝑙𝑙)

𝜕𝜕𝑊𝑊𝑘𝑘
(𝑙𝑙) =

∑𝑖𝑖,𝑗𝑗 𝛿𝛿𝑖𝑖𝑖𝑖
(𝑙𝑙)1{ℎ 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 𝑘𝑘}

where 𝛿𝛿 is the error term which can be
obtained from backpropagation, and 1{⋅
} is the indicator function

• Training flow of blocked hash neural
network

SGD
Real

weight W

Preditermin
ed hash

function h

Randomly
initialized real

weights W

Virtual weights
V=Wh

Feedforward
pass: o = f(Vi)

Backward pass:
dV = do f’i

Chain rules dW

Hardware acceleration of blocked hash neural
network: basic arithmetic operation

• The basic operation of feedforward pass is a matrix vector operation

• Loop tiling the current real weight block in the ‘cache’ memory since
we block the hash neural network

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑊𝑊ℎ
𝑏𝑏𝑏𝑏𝑏𝑏

Hardware acceleration of blocked hash neural
network: loop tiling

• Two-level memory hierarchy
• On-chip SRAM: store all the real weights W (we can store weights on-chip

since we compress the weights a lot)
• On-chip register file: store only the current active real weight block

• Loop tiling size T𝑗𝑗 = 𝑏𝑏/𝑐𝑐𝑐𝑐, where b is the real block size and cr is the
desired compression rate

Within the tiled loop, 𝑉𝑉𝑖𝑖𝑡𝑡𝑗𝑗
comes from the same block

Hardware acceleration of blocked hash neural
network: loop unrolling

• Unroll the loop to parallelize the computation

To be computed in p
PEs

Outline

• Introduction
• Related work
• Blocked hash neural network: algorithm
• Blocked hash neural network: hardware architecture
• Experiment results
• Conclusion

Hardware architecture of blocked hash neural
network

• 5 pipeline stages
• Refresh & Hash: fetch the

real weights from on-chip
SRAM to local register file &
hash computation for index

• XBAR & RE Inact: crossbar
access the corresponding real
weights & read the input
activations

• Mult: compute the
multiplication in parallel

• Merge: compute the
accumulation

• ReLU & WB: nonlinear
computation & write back to
output activation

Simplified hash function for hardware
implementation

• A general hash function is complex: large area & multiple cycles
• A simplified hash function is tolerable due to our simulation results

𝑉𝑉𝑖𝑖𝑖𝑖
(𝑙𝑙) = 𝑊𝑊ℎ 𝑖𝑖,𝑗𝑗,𝑙𝑙

𝑙𝑙 𝜉𝜉(𝑖𝑖, 𝑗𝑗, 𝑙𝑙)
• ℎ 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 :𝑁𝑁3 → {1, 2, … , 𝑏𝑏} determines the mapping procedure. Uniformly

distributes the index within range 1 to b:
ℎ 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 𝑖𝑖⨁𝑗𝑗⨁𝑙𝑙 %𝑏𝑏

• 𝜉𝜉 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 :𝑁𝑁3 → {−1, +1} removes the bias of hash inner-product. Randomly
generates the ±1:

𝜉𝜉 𝑖𝑖, 𝑗𝑗, 𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿%2

Hardware block of hash generator

Outline

• Introduction
• Related work
• Blocked hash neural network: algorithm
• Blocked hash neural network: hardware architecture
• Experiment results
• Conclusion

Simulation setup

• Algorithm level verification on MATLAB
• Verify the performance degradation under different compression rates
• Offline train using stochastic gradient descent (SGD)
• Numerical gradient check to guarantee the backpropagation is correct
• Fixed point simulation of hardware architecture

• Hardware implementation by Verilog
• Synthesize, place and routing using Xilinx Vivado
• Prototype in Xilinx FPGA VC709

• Evaluate performance over 3 different datasets with variant neural
network architecture only consisting of FC layers

• Caltech 101 silhouettes
• Handwritten MNIST
• Handwritten MNIST challenging variant ROT

Algorithm-level compression performance

• Five neural network compression schemes
• Equivalent neural net: plain neural network with equiv. size
• Deep compression
• Conventional hash network: with ideal hash function[*]

• Blocked hash network: hash network with blocked constraints
• BHNN: hardware-mimic blocked hash neural network

[*] Ideal hash function: open source xxhash @ https://github.com/Cyan4973/xxHash

https://github.com/Cyan4973/xxHash

Algorithm-level compression performance
(cont.)

• Dataset: MNIST
• Over 2 different neural network architectures

-6 -5 -4 -3 -2 -1 0

Compression rate (2
x

)

1

2

3

4

5

6

7

8

Te
st

 e
rro

r r
at

e
(%

)

Dataset: MNIST; Arch: 784-1000-10

Equiv. neural net

Deep compression

Conventional hashed neural net

Blocked hashing neural net

BHNN

-6 -5 -4 -3 -2 -1 0

Compression rate (2
x

)

1

1.5

2

2.5

3

3.5

4

Te
st

 e
rro

r r
at

e
(%

)

Dataset: MNIST; Arch: 784-1000-1000-1000-10

Equiv. neural net

Deep compression

Conventional hashed neural net

Blocked hashing neural net

BHNN

Algorithm-level compression performance
(cont.)

• Dataset: Caltech101
• Over 2 different neural network architectures

Algorithm-level compression performance
(cont.)

• Dataset: ROT
• Over 2 different neural network architectures

Hardware implementation results

• Micro-architectural parameters on Xilinx VC709

• Resource utilization

Micro-architectural parameters Value

Parallelism p 32

Real block size b 64

Quantization scheme Q0.15 (16-bit)

Compression ratio 1/16

Clock freq 100MHz

Resource DSP BRAM LUT FF

Used 32 939 17671 13271

Utilization (%) 0.89 63.88 4.08 1.53

Hardware acceleration results

• Baseline: conventional hash (w/o spatial locality) on CPU & GPU

• FPGA has a speedup of over 20x and 3~5x over CPU and GPU under
various neural network architectures

Arch / Platform Intel i7 6700HQ NVIDIA GTX 960M Xilinx VC709

784-1000-10 5.54ms / image 1.17ms / image 0.25ms / image

784-1000-1000-1000-
10

20.19ms / image 2.98ms / image 0.89ms / image

784-1000-101 6.31ms / image 1.25ms / image 0.28ms / image

784-1000-1000-1000-
101

20.96ms / image 3.05ms / image 0.92ms / image

Outline

• Introduction
• Related work
• Blocked hash neural network: algorithm
• Blocked hash neural network: hardware architecture
• Experiment results
• Conclusion

Conclusion

• A novel compression algorithm for neural network
• Spatial locality for the conventional hash neural network
• Maintain the same performance with the conventional hash neural network

and outperform the “deep compression” scheme under heavy compression
region

• A hardware accelerator catering for the blocked hash neural network
• Two-level memory hierarchy taking advantage of the spatial locality
• Hardware simplification of the general hash function
• Achieves ~20x and ~4x speedup compared with CPU and GPU

	BHNN: a Memory-Efficient Accelerator for Compressing Deep Neural Network with Blocked Hashing Techniques
	Outline
	The renaissance of neural network
	Three elementary layers in neural network
	Outline
	Related work
	Potential issues of hash neural network and deep compression
	Outline
	Our approach: blocked hash neural network
	Training of blocked hash neural network
	Hardware acceleration of blocked hash neural network: basic arithmetic operation
	Hardware acceleration of blocked hash neural network: loop tiling
	Hardware acceleration of blocked hash neural network: loop unrolling
	Outline
	Hardware architecture of blocked hash neural network
	Simplified hash function for hardware implementation
	Outline
	Simulation setup
	Algorithm-level compression performance
	Algorithm-level compression performance (cont.)
	Algorithm-level compression performance (cont.)
	Algorithm-level compression performance (cont.)
	Hardware implementation results
	Hardware acceleration results
	Outline
	Conclusion

