Energy Aware Computing Research Group = - - - =

Quantized Deep Neural Networks for Energy Efficient Hardware-based Inference

Authors: Ruizhou Ding, Zeye Liu, R. D. (Shawn) Blanton, Diana Marculescu Presenter: R. D. (Shawn) Blanton Department of Electrical and Computer Engineering Carnegie Mellon University rblanton@andrew.cmu.edu

Why energy-efficient Deep Neural Networks

 Deep neural network (DNN) has been an useful machine learning model for many classification applications

DNN example: LeNet [LeCun *et al.*, 1998]

Many classification systems require low power, area and storage

Google's AlphaGo: 13-layer architecture; ~4 million parameters

[Silver *et al.*, 2016]

Why energy-efficient Deep Neural Networks

Deep neural network (DNN) has been an useful machine learning model for many classification applications

DNN example: LeNet [LeCun et al., 1998]

Main goal: to reduce energy, area and storage for **DNNs' hardware implementation**

Many classification systems require low power, area and storage

• Google's AlphaGo: 13-layer architecture; ~4 million parameters

[Silver *et al.*, 2016]

Outline

DNN quantization

LightNNs

Approximation

Training approach

Experiment

♦ Setup

Results for accuracy, storage, energy, and area

Guideline for model selection

Conclusion

Energy vs. Accuracy

DNNs' energy consumption mainly comes from two sources:

Data movement & logic computation

Energy vs. Accuracy

DNNs' energy consumption mainly comes from two sources:

Data movement & logic computation

Reducing memory accesses

Deep compression [H. Song, *et al.*, 2015]

Reducing computation energy

Inexact circuits [Z. Du, *et al.*, 2014]

- Reducing data movement
 Reducing logic energy
- A unified solution: **DNN quantization**

A unified solution: DNN quantization

weights: connections between two consecutive layers activations: output values of each hidden layer

• A unified solution: **DNN quantization**

Constraining weights and/or activations to discrete values

weights: connections between two consecutive layers activations: output values of each hidden layer

Reducing data movement
Reducing logic energy

A unified solution: DNN quantization

 Constraining weights and/or activations to discrete values
 Examples: binarized DNNs, fixed-point DNNs, ternary-weight DNNs, etc.

weights: connections between two consecutive layers activations: output values of each hidden layer

Binarized Neural Networks (BNNs)

BNNs reduce both memory and computation, but may lose much accuracy

Binarized Neural Networks (BNNs)

- BNNs reduce both memory and computation, but may lose much accuracy
 A float
- Two types of BNNs:

BNNs reduce storage, but their accuracy degrades especially when the network is small

Rell

LightNNs: constraining number of 1s in weights

Replacing multipliers with limited shift and add operators

 $\bullet w \cdot x = sign(w)(2^{n_1} + 2^{n_2} + \dots + 2^{n_K}) \cdot x = sign(w)(x \ll n_1 + \dots + x \ll n_K)$

• We constrain *K* to be one or two

• When K = 1, the equivalent multiplier is just a shift

• When K = 2, the equivalent multiplier is two shifts and one add (shown below)

LightNNs: using stochastic rounding

- Stochastic rounding strategy is used to constrain the floating point weights to have at most K 1s
 - Stochastic rounding:

[S. Gupta, et al., 2015]

$$w = \begin{cases} w_h, & \text{with prob } p \\ w_l, & \text{with prob } 1 - p \end{cases}$$

w: weight value

 $p = \frac{w - w_l}{w - w_l}$

 w_h : nearest higher legal value w_l : nearest lower legal value

• If
$$K = 1$$
, then $4 = 100_{(2)}$, \checkmark $3 = 11_{(2)}$

♦ 3 can be rounded to 2 or 4 both with 50% probability

LightNNs: using stochastic rounding

- Stochastic rounding strategy is used to constrain the floating point weights to have at most K 1s
 - Stochastic rounding:

[S. Gupta, et al., 2015]

LightNNs can also have either ReLU or Sign activation functions

Training LightNNs

Backpropagation algorithm is modified: in the forward pass, the weights are first rounded and then used for computation

Experiment setup

Models

Model	Weights	Activations	Intermediate results	
Conventional DNN	floating	ReLU	floating	
LightNN-2	$ \begin{array}{c} \pm (2^{-m_1} + 2^{-m_2}), \\ m_1, m_2 = 0, 1, \dots, 7 \end{array} $	ReLU	floating	
LightNN-1	$\pm 2^{-m}, m = 0, 1, \dots, 7$	ReLU	floating	_
BinaryConnect	+1 or -1	ReLU	floating	[Courbariaux,
LightNN-2-bin	$ \begin{array}{c} \pm (2^{-m_1} + 2^{-m_2}), \\ m_1, m_2 = 0, 1, \dots, 7 \end{array} $	Sign	+1 or -1	– et al., 2015]
LightNN-1-bin	$\pm 2^{-m}, m = 0, 1, \dots, 7$	Sign	+1 or -1	
BinaryNet	+1 or -1	Sign	+1 or -1	[Hubara, et al. 2016]
				20101

Experiment setup

Datasets and DNN configurations

Dataset	Configuration	Detail		
	1-hidden	One hidden layer with 100 neurons		
MNIST	2-conv	Two convolution layers and two fully-connected layers		
	3-hidden	Three hidden layers each with 4096 neurons		
CIFAR-10	3-conv	Three convolution layers and one fully-connected layer		
	6-conv	Six convolution layers and three fully-connected layers		

Red: small configurations Blue: large configurations

		MNIST			
		1-hidden	2-conv	3-hidden	
Number of parameters		79,510	431,080	36,818,954	
	Conventional	1.72%	0.86%	0.75%	
Test error	BinaryConnect	4.10%	4.63%	1.29%	
	BinaryNet	6.79%	3.16%	0.96%	

		MNIST			
		1-hidden	2-conv	3-hidden	
Number of parameters		79,510	431,080	36,818,954	
	Conventional	1.72%	0.86%	0.75%	
Test error	LightNN-2	1.86%	1.29%	0.83%	
	LightNN-1	2.09%	2.31%	0.89%	
	BinaryConnect	4.10%	4.63%	1.29%	
	LightNN-2-bin	2.94%	1.67%	0.89%	
	LightNN-1-bin	3.10%	1.86%	0.94%	
	BinaryNet	6.79%	3.16%	0.96%	

		MNIST			CIFAR-10	
		1-hidden	2-conv	3-hidden	3-conv	6-conv
Number of parameters		79,510	431,080	36,818,954	82,208	39,191,690
	Conventional	1.72%	0.86%	0.75%	21.16%	10.94%
Test error	LightNN-2	1.86%	1.29%	0.83%		
	LightNN-1	2.09%	2.31%	0.89%		
	BinaryConnect	4.10%	4.63%	1.29%	43.22%	9.90%
	LightNN-2-bin	2.94%	1.67%	0.89%		
	LightNN-1-bin	3.10%	1.86%	0.94%		
	BinaryNet	6.79%	3.16%	0.96%	73.82%	11.40%

		MNIST			CIFAR-10	
		1-hidden	2-conv	3-hidden	3-conv	6-conv
Number of parameters		79,510	431,080	36,818,954	82,208	39,191,690
	Conventional	1.72%	0.86%	0.75%	21.16%	10.94%
Test error	LightNN-2	1.86%	1.29%	0.83%	24.62%	8.84%
	LightNN-1	2.09%	2.31%	0.89%	26.11%	8.79%
	BinaryConnect	4.10%	4.63%	1.29%	43.22%	9.90%
	LightNN-2-bin	2.94%	1.67%	0.89%	32.58%	10.12%
	LightNN-1-bin	3.10%	1.86%	0.94%	36.56%	9.05%
	BinaryNet	6.79%	3.16%	0.96%	73.82%	11.40%

		MNIST			CIFAR-10	
		1-hidden	2-conv	3-hidden	3-conv	6-conv
Number of parameters		79,510	431,080	36,818,954	82,208	39,191,690
	Conventional	1.72%	0.86%	0.75%	21.16%	10.94%
Test error	LightNN-2	1.86%	1.29%	0.83%	24.62%	8.84%
	LightNN-1	2.09%	2.31%	0.89%	26.11%	8.79%
	BinaryConnect	4.10%	4.63%	1.29%	43.22%	9.90%
	LightNN-2-bin	2.94%	1.67%	0.89%	32.58%	10.12%
	LightNN-1-bin	3.10%	1.86%	0.94%	36.56%	9.05%
	BinaryNet	6.79%	3.16%	0.96%	73.82%	11.40%

Total storage results

- BNN weight: 1 bit
- LightNN-1 weight: 4 bits
- LightNN-2 weight: 8 bits
- Conventional weight: 32 bits

Energy and area synthesis results

Guideline for model selection

Trade-off between accuracy and energy

Guideline for model selection

Trade-off between accuracy and energy

Conclusion

- DNN quantization can reduce energy consumption for hardwarebased DNN inference
- LightNNs replace the multipliers with more energy-efficient operators
- LightNNs provide more options for hardware designers to select DNN models based on their accuracy and resource constraints

Energy Aware Computing Research Group

Thank you!

Enter