
Handi Yu1 and Xin Li1,2

1 ECE, Duke University, Durham, NC, USA
2 iAPSE, Duke Kunshan University, Jiangsu, P. R. China

Intelligent Corner Synthesis via Cycle-
Consistent Generative Adversarial
Networks for Efficient Validation of

Autonomous Driving Systems

Slide 2

Autonomous Driving Systems

 Autonomous driving relies on a large number of machine
learning algorithms for perception, planning and control
 A machine learning algorithm can NEVER be 100% accurate

 System validation is
necessary over a large
set of test cases

Example: stop sign detection

Slide 3

Test Case Generation

 Test cases must broadly cover all possible scenarios
 Extreme corners are difficult or expensive to observe physically
 Test cases must be artificially synthesized with high accuracy

Temp/
EM Aging

Rain/
Fog

Day/
NightNominal

cases
Environmental

corners Synthesized
corner cases

Slide 4

Test Case Generation

 State-of-the-art methods are task-specific and rely on physical
models that may not be highly accurate in practice
 [Yu 2017]: model and synthesize circuit-level non-idealities
 [Hospach 2016]: model and synthesize rain drops
 [Gallen 2015]: model and synthesize fog
 Etc.

 Proposed work
 A general generator for corner synthesis is developed by using

cycle-consistent generative adversarial network (Cycle-GAN)
 High-fidelity corner cases are efficiently generated by the

proposed Cycle-GAM model

[Yu 2017]: Impact of circuit-level non-idealities on vision-based autonomous driving systems, ICCAD, 2017
[Hospach 2016]: Simulation of falling rain for robustness testing of video-based surround sensing systems,
DATE, 2016
[Gallen 2015]: Nighttime visibility analysis and estimation method in the presence of dense fog, IEEE Trans.
Intell. Transp. Syst., 2015

Slide 5

Outline

 Motivation
 Proposed approach
 Experimental results
 Conclusions

Slide 6

Generator Structure

 A generator synthetically maps nominal recordings to corner cases
 Encoder: extract features from a given image
 Transformation: modify extracted features
 Decoder: generate corner cases from modified features

Encoder Transformation Decoder

Co
nv

ol
ut

io
na

lla
ye

r

Co
nv

ol
ut

io
na

lla
ye

r

Re
sid

ua
lb

lo
ck

Re
sid

ua
lb

lo
ck

De
co

nv
ol

ut
io

na
lla

ye
r

De
co

nv
ol

ut
io

na
lL

ay
er

Nominal
recordings

Corner
cases

Slide 7

Generator: Encoder

 Encoder is composed of a convolutional neural network (CNN)
 Each convolution: convolute input data with a small-size weight

filter θ, resulting in a feature map
 Extracted features are locally correlated and spatially invariant

(consistent with the characteristics of real-world images)

Input image Feature maps
Convolutional Layer Batch-normalization /

ReLU / pooling layers
Fully connected

layer

Outputθ

High-level
feature maps

Slide 8

Generator: Encoder

 Batch-normalization layer: improve learning speed and accuracy
 ReLU layer: perform nonlinear transformation
 Pooling layer: reduce dimension
 Fully connected layer: generate classification result
 CNN extracts high-level features for complex objects in an image

Input image Feature maps
Convolutional Layer Batch-normalization /

ReLU / pooling layers
Fully connected

layer

Outputθ

High-level
feature maps

Slide 9

Generator: Transformation

 Residual network (ResNet) is adopted to implement transformation
 CNN learns a full mapping f(xIN) directly
 ResNets learns a residual function r(xIN) that is often easy to

implementation for transformation

xIN

ReLu
+f(xIN) = xIN + r(xIN)

xINr(xIN)

Convolutional layer

Convolutional layer

ReLu

xOUT

Convolutional layer

Convolutional layer

xIN

ReLu

ReLu

xOUT

f(xIN)

CNN ResNet

Slide 10

Generator: Decoder

 Deconvolution layers are applied to invert the convolution
operations adopted by encoder
 A deconvolutional layer enhances the resolution of feature maps
 Modified features are transformed back to an image with its

original resolution

Convolutional layer Deconvolutional layer

4×4 feature
maps

2×2 feature
maps

2×2 feature
maps

4×4 feature
maps

Paddings using 0

Slide 11

Generator Training

 Training a generator is a critical yet challenging task
 No prior knowledge is known for corner cases
 Nominal and corner cases are unpaired in training dataset
 Mode collapse often occurs if a training algorithm is not

appropriately designed

 A robust general-purpose training method is required
 Cycle-consistent generative adversarial network (CycleGAN)

Tr

Lose diversityGenerator

Slide 12

Cycle-Consistent Generative Adversarial Network (CycleGAN)

 Forward generator gF generates synthetic corner case ySYN
from real nominal recording xREAL

 Forward discriminator dF (implemented with CNN) judges
whether a given corner case is “real” or “synthetic”

 dF learns to be a good judger, while gF learns to fool dF
 gF and dF compete and improve each other during training

gFxREAL ySYN

dFfLOSS,F

yREAL

fLOSS,F : Forward adversarial
loss function
Good gF → large fLOSS,F
Good dF → small fLOSS,F

(),max min ,
FF

LOSS F F Fdg
f g d

Slide 13

Cycle-Consistent Generative Adversarial Network (CycleGAN)

 Backward generator gB synthesizes nominal image xSYN from
real corner case yREAL

 Backward discriminator dB judges whether a given nominal
image is “real” or “synthetic”

 gB and dB compete and improve each other during training

xREAL

yREALgBxSYN

dB fLOSS,B

fLOSS,B: Backward adversarial
loss function
Good gB → large fLOSS,B
Good dB → small fLOSS,B

(),max min ,
BB

LOSS B B Bdg
f g d

Slide 14

 Cycle-consistency is introduced to avoid mode collapse
 ySYN synthesized from xREAL is mapped back to xCYC by gB

 xCYC and xREAL should satisfy cycle consistency: xCYC ≈ xREAL

 If cycle consistency holds, mode collapse cannot occur

Cycle-Consistent Generative Adversarial Network (CycleGAN)

gB

xREAL ySYN

xCYC

fLOSS,CYC

fLOSS,CYC: Cycle-consistent
loss function

(),,
min ,

F B
LOSS CYC F Bg g

f g g

Mode collapse

Cycle consistency
does not hold

Slide 15

Cycle-Consistent Generative Adversarial Network (CycleGAN)

 Cycle consistency between yCYC and yREAL is similarly defined
 xSYN synthesized from yREAL is mapped back to yCYC by gF

 yCYC and yREAL should satisfy cycle consistency: yCYC ≈ yREAL

 A full loss function is formed to train CycleGAN composed of
two generators and two discriminators

xSYN

gF

yREAL

yCYC

fLOSS,CYC

fLOSS,CYC: Cycle-consistent
loss function

(),,
min ,

F B
LOSS CYC B Fg g

f g g

()
()
()

()
()

, ,

,,
, ,

, ,
max min , , ,

, ,F BF B

LOSS F F F LOSS CYC F B
LOSS F F B Bd dg g

LOSS B B B LOSS CYC B F

f g d f g g
f g d g d

f g d f g g
λ

+ +   
= − ⋅   
      

Weight

Slide 16

Outline

 Motivation
 Proposed approach
 Experimental results
 Conclusions

Slide 17

Experimental Setup

 Network settings
 Each generator is composed of 12 CNN and ResNet blocks based

on [Zhu 2017]
 Each discriminator is implemented with a PatchGAN network

composed of 4 blocks
 Experimental setup

 Stop sign detection for autonomous driving
 Consider nominal dataset from [BelgiumTS], [GTSDB] and

[GTSRB] and high temperature corner based on physical modeling
 A cascade classifier is trained by using nominal data and validated

for both nominal and corner cases

[Zhu 2017]: Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV, 2017
[BelgiumTS]: Traffic sign recognition - how far are we from the solution, IJCNN, 2013
[GTSDB]: Detection of traffic signs in real-world images: the German traffic sign detection benchmark,
IJCNN, 2013
[GTSRB]: Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition, Neural
Networks, 2012

Slide 18

Temperature Variations

 Several examples of actual and synthetic images at high
temperature are shown for comparison purposes

xREAL (room
temperature)

ySYN (high
temperature)

yREAL (high
temperature)

xCYC (room
temperature)

Slide 19

Temperature Variations

 STOP sign detection is validated at high temperature
 Full dataset (golden): 164K high-temperature images
 Small dataset (conventional): 2K high-temperature images
 Hybrid dataset (proposed): 2K high-temperature images and 162K

synthetic images

Conventional method with
few test data cannot

accurately capture the
system failure rate

Slide 20

Failure rate 1st 2nd 3rd Total

Full dataset
True positive 97.50% 97.50% 98.50% 93.64%
False positive 14.67% 6.42% 5.85% 5.51×10-4

Small dataset
True positive 97.50% 97.50% 98.50% 93.64%
False positive 5.60% 8.57% 0.00 0.00

Hybrid dataset
True positive 97.50% 97.50% 98.50% 93.64%
False positive 14.76% 5.27% 4.78% 3.72×10-4

Temperature Variations

 Estimation error of false positive rate is reduced by 100× and 1.86×
for the first- and second-stage classifiers

 Conventional method with small dataset results in zero false
positive rate for the third-stage classifier

Slide 21

Conclusions

 Test cases must broadly cover all possible scenarios for
accurate system validation
 Physically observing extreme corners is difficult and expensive

 Propose a cycle-consistent generative adversarial network
(CycleGAN) to generate synthetic test cases
 Simultaneously train two generators and two discriminators
 Accurately estimate true positive rate and false positive rate (up

to 100× error reduction)

 Future work
 Synthesize test cases for multiple scenarios

	Intelligent Corner Synthesis via Cycle-Consistent Generative Adversarial Networks for Efficient Validation of Autonomous Driving Systems
	Autonomous Driving Systems
	Test Case Generation
	Test Case Generation
	Outline
	Generator Structure
	Generator: Encoder
	Generator: Encoder
	Generator: Transformation
	Generator: Decoder
	Generator Training
	Cycle-Consistent Generative Adversarial Network (CycleGAN)
	Cycle-Consistent Generative Adversarial Network (CycleGAN)
	Cycle-Consistent Generative Adversarial Network (CycleGAN)
	Cycle-Consistent Generative Adversarial Network (CycleGAN)
	Outline
	Experimental Setup
	Temperature Variations
	Temperature Variations
	Temperature Variations
	Conclusions

