Intelligent Corner Synthesis via Cycle-Consistent Generative Adversarial Networks for Efficient Validation of Autonomous Driving Systems

Handi Yu¹ and Xin Li^{1,2} ¹ ECE, Duke University, Durham, NC, USA ² iAPSE, Duke Kunshan University, Jiangsu, P. R. China

Autonomous Driving Systems

- Autonomous driving relies on a large number of machine learning algorithms for perception, planning and control
 - A machine learning algorithm can NEVER be 100% accurate

Example: stop sign detection

 System validation is necessary over a large set of test cases

Test Case Generation

Test cases must broadly cover all possible scenarios

- Extreme corners are difficult or expensive to observe physically
- Test cases must be artificially synthesized with high accuracy

Test Case Generation

- State-of-the-art methods are task-specific and rely on physical models that may not be highly accurate in practice
 - [Yu 2017]: model and synthesize circuit-level non-idealities
 - [Hospach 2016]: model and synthesize rain drops
 - [Gallen 2015]: model and synthesize fog
 - Etc.
- Proposed work
 - A general generator for corner synthesis is developed by using cycle-consistent generative adversarial network (Cycle-GAN)
 - High-fidelity corner cases are efficiently generated by the proposed Cycle-GAM model

[Yu 2017]: Impact of circuit-level non-idealities on vision-based autonomous driving systems, *ICCAD*, 2017 [Hospach 2016]: Simulation of falling rain for robustness testing of video-based surround sensing systems, *DATE*, 2016

[Gallen 2015]: Nighttime visibility analysis and estimation method in the presence of dense fog, *IEEE Trans. Intell. Transp. Syst.*, 2015

Outline

Motivation

- Proposed approach
- Experimental results
- Conclusions

Generator Structure

• A generator synthetically maps nominal recordings to corner cases

- Encoder: extract features from a given image
- Transformation: modify extracted features
- Decoder: generate corner cases from modified features

Generator: Encoder

- Encoder is composed of a convolutional neural network (CNN)
- Each convolution: convolute input data with a small-size weight filter θ, resulting in a feature map
 - Extracted features are locally correlated and spatially invariant (consistent with the characteristics of real-world images)

Generator: Encoder

- Batch-normalization layer: improve learning speed and accuracy
- ReLU layer: perform nonlinear transformation
- Pooling layer: reduce dimension
- Fully connected layer: generate classification result
- CNN extracts high-level features for complex objects in an image

Generator: Transformation

- Residual network (ResNet) is adopted to implement transformation
 - **¬** CNN learns a full mapping $f(\mathbf{x}_{IN})$ directly
 - ResNets learns a residual function r(x_{IN}) that is often easy to implementation for transformation

Generator: Decoder

- Deconvolution layers are applied to invert the convolution operations adopted by encoder
 - A deconvolutional layer enhances the resolution of feature maps
 - Modified features are transformed back to an image with its original resolution

Generator Training

- Training a generator is a critical yet challenging task
 - No prior knowledge is known for corner cases
 - Nominal and corner cases are unpaired in training dataset
 - Mode collapse often occurs if a training algorithm is not appropriately designed

- A robust general-purpose training method is required
 - Cycle-consistent generative adversarial network (CycleGAN)

Tr

- Forward generator g_F generates synthetic corner case y_{SYN} from real nominal recording x_{REAL}
- Forward discriminator d_F (implemented with CNN) judges whether a given corner case is "real" or "synthetic"
- \blacksquare d_F learns to be a good judger, while g_F learns to fool d_F
 - \blacksquare g_F and d_F compete and improve each other during training

- Backward generator g_B synthesizes nominal image \mathbf{x}_{SYN} from real corner case \mathbf{y}_{REAL}
- Backward discriminator d_B judges whether a given nominal image is "real" or "synthetic"
- \blacksquare g_B and d_B compete and improve each other during training

$$\max_{g_B} \min_{d_B} f_{LOSS,B}(g_B, d_B)$$

 $f_{LOSS,B}$: Backward adversarial loss function Good $g_B \rightarrow \text{large} f_{LOSS,B}$ Good $d_B \rightarrow \text{small} f_{LOSS,B}$

- Cycle-consistency is introduced to avoid mode collapse
 - **¬** \mathbf{y}_{SYN} synthesized from \mathbf{x}_{REAL} is mapped back to \mathbf{x}_{CYC} by g_B
 - **¬** \mathbf{x}_{CYC} and \mathbf{x}_{REAL} should satisfy cycle consistency: $\mathbf{x}_{CYC} \approx \mathbf{x}_{REAL}$

If cycle consistency holds, mode collapse cannot occur

- Cycle consistency between y_{CYC} and y_{REAL} is similarly defined
 x_{SYN} synthesized from y_{REAL} is mapped back to y_{CYC} by g_F
 - **¬** \mathbf{y}_{CYC} and \mathbf{y}_{REAL} should satisfy cycle consistency: $\mathbf{y}_{CYC} \approx \mathbf{y}_{REAL}$

A full loss function is formed to train CycleGAN composed of two generators and two discriminators

$$\max_{g_F, g_B} \min_{d_F, d_B} f_{LOSS} \left(g_F, d_F, g_B, d_B \right) = \begin{bmatrix} f_{LOSS, F} \left(g_F, d_F \right) + \\ f_{LOSS, B} \left(g_B, d_B \right) \end{bmatrix} - \lambda \cdot \begin{bmatrix} f_{LOSS, CYC} \left(g_F, g_B \right) + \\ f_{LOSS, CYC} \left(g_B, g_F \right) \end{bmatrix}$$
Weight Slide 15

Outline

Motivation
Proposed approach
Experimental results
Conclusions

Experimental Setup

Network settings

- Each generator is composed of 12 CNN and ResNet blocks based on [Zhu 2017]
- Each discriminator is implemented with a PatchGAN network composed of 4 blocks
- Experimental setup
 - Stop sign detection for autonomous driving
 - Consider nominal dataset from [BelgiumTS], [GTSDB] and [GTSRB] and high temperature corner based on physical modeling
 - A cascade classifier is trained by using nominal data and validated for both nominal and corner cases

[Zhu 2017]: Unpaired image-to-image translation using cycle-consistent adversarial networks, *ICCV*, 2017 [BelgiumTS]: Traffic sign recognition - how far are we from the solution, *IJCNN*, 2013 [GTSDB]: Detection of traffic signs in real-world images: the German traffic sign detection benchmark, *IJCNN*, 2013

[GTSRB]: Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition, *Neural Networks*, 2012 Slide 17

Temperature Variations

Several examples of actual and synthetic images at high temperature are shown for comparison purposes

x_{REAL} (room temperature) temperature)

\mathbf{y}_{SYN} (high

\mathbf{y}_{REAL} (high temperature)

 \mathbf{x}_{CYC} (room temperature)

Temperature Variations

True Positive Rate

0.90

0.85

STOP sign detection is validated at high temperature

- Full dataset (golden): 164K high-temperature images
- Small dataset (conventional): 2K high-temperature images
- Hybrid dataset (proposed): 2K high-temperature images and 162K synthetic images

015

Conventional method with few test data cannot accurately capture the system failure rate

0.05

False Positive Rate

◆1st stage full dataset -+-3rd stage full dataset + 1st stage small dataset + 2nd stage samll dataset + 3rd stage samll dataset [–]1st stage hybrid dataset ^{2nd stage hybrid dataset} 3rd stage hybrid dataset Slide 19

Temperature Variations

- Estimation error of false positive rate is reduced by 100× and 1.86× for the first- and second-stage classifiers
- Conventional method with small dataset results in zero false positive rate for the third-stage classifier

Failure rate		1 st	2 nd	3rd	Total
Full dataset	True positive	97.50%	97.50%	98.50%	93.64%
	False positive	14.67%	6.42%	5.85%	5.51×10 ⁻⁴
Small dataset	True positive	97.50%	97.50%	98.50%	93.64%
	False positive	5.60%	8.57%	0.00	0.00
Hybrid dataset	True positive	97.50%	97.50%	98.50%	93.64%
	False positive	14.76%	5.27%	4.78%	3.72×10 ⁻⁴

Conclusions

- Test cases must broadly cover all possible scenarios for accurate system validation
 - Physically observing extreme corners is difficult and expensive
- Propose a cycle-consistent generative adversarial network (CycleGAN) to generate synthetic test cases
 - Simultaneously train two generators and two discriminators
 - Accurately estimate true positive rate and false positive rate (up to 100× error reduction)

Future work

Synthesize test cases for multiple scenarios