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Autonomous Driving Systems

 Autonomous driving relies on a large number of machine 
learning algorithms for perception, planning and control
 A machine learning algorithm can NEVER be 100% accurate

 System validation is 
necessary over a large 
set of test cases

Example: stop sign detection
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Test Case Generation

 Test cases must broadly cover all possible scenarios
 Extreme corners are difficult or expensive to observe physically 
 Test cases must be artificially synthesized with high accuracy
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Test Case Generation

 State-of-the-art methods are task-specific and rely on physical 
models that may not be highly accurate in practice
 [Yu 2017]: model and synthesize circuit-level non-idealities
 [Hospach 2016]: model and synthesize rain drops
 [Gallen 2015]: model and synthesize fog
 Etc.

 Proposed work
 A general generator for corner synthesis is developed by using 

cycle-consistent generative adversarial network (Cycle-GAN)
 High-fidelity corner cases are efficiently generated by the 

proposed Cycle-GAM model

[Yu 2017]: Impact of circuit-level non-idealities on vision-based autonomous driving systems, ICCAD, 2017 
[Hospach 2016]: Simulation of falling rain for robustness testing of video-based surround sensing systems, 
DATE, 2016
[Gallen 2015]: Nighttime visibility analysis and estimation method in the presence of dense fog, IEEE Trans. 
Intell. Transp. Syst., 2015
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Outline

 Motivation
 Proposed approach
 Experimental results
 Conclusions
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Generator Structure

 A generator synthetically maps nominal recordings to corner cases
 Encoder: extract features from a given image
 Transformation: modify extracted features
 Decoder: generate corner cases from modified features

Encoder Transformation Decoder
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Generator: Encoder

 Encoder is composed of a convolutional neural network (CNN) 
 Each convolution: convolute input data with a small-size weight 

filter θ, resulting in a feature map
 Extracted features are locally correlated and spatially invariant

(consistent with the characteristics of real-world images)

Input image Feature maps
Convolutional Layer Batch-normalization / 

ReLU / pooling layers
Fully connected

layer

Outputθ

High-level
feature maps
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Generator: Encoder

 Batch-normalization layer: improve learning speed and accuracy
 ReLU layer: perform nonlinear transformation
 Pooling layer: reduce dimension
 Fully connected layer: generate classification result
 CNN extracts high-level features for complex objects in an image

Input image Feature maps
Convolutional Layer Batch-normalization / 

ReLU / pooling layers
Fully connected

layer

Outputθ

High-level
feature maps
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Generator: Transformation

 Residual network (ResNet) is adopted to implement transformation
 CNN learns a full mapping f(xIN) directly
 ResNets learns a residual function r(xIN) that is often easy to 

implementation for transformation

xIN

ReLu
+f(xIN) = xIN + r(xIN)

xINr(xIN)

Convolutional layer

Convolutional layer

ReLu

xOUT

Convolutional layer

Convolutional layer

xIN

ReLu

ReLu

xOUT

f(xIN)

CNN ResNet
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Generator: Decoder

 Deconvolution layers are applied to invert the convolution 
operations adopted by encoder
 A deconvolutional layer enhances the resolution of feature maps
 Modified features are transformed back to an image with its 

original resolution

Convolutional layer Deconvolutional layer

4×4 feature
maps

2×2 feature
maps

2×2 feature
maps

4×4 feature
maps

Paddings using 0
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Generator Training

 Training a generator is a critical yet challenging task
 No prior knowledge is known for corner cases
 Nominal and corner cases are unpaired in training dataset
 Mode collapse often occurs if a training algorithm is not 

appropriately designed

 A robust general-purpose training method is required
 Cycle-consistent generative adversarial network (CycleGAN)

Tr

Lose diversityGenerator
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Cycle-Consistent Generative Adversarial Network (CycleGAN)

 Forward generator gF generates synthetic corner case ySYN
from real nominal recording xREAL

 Forward discriminator dF (implemented with CNN) judges 
whether a given corner case is “real” or “synthetic”

 dF learns to be a good judger, while gF learns to fool dF
 gF and dF compete and improve each other during training 

gFxREAL ySYN

dFfLOSS,F

yREAL

fLOSS,F : Forward adversarial 
loss function
Good gF → large fLOSS,F
Good dF → small fLOSS,F

( ),max min ,
FF

LOSS F F Fdg
f g d
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Cycle-Consistent Generative Adversarial Network (CycleGAN)

 Backward generator gB synthesizes nominal image xSYN from 
real corner case yREAL

 Backward discriminator dB judges whether a given nominal 
image is “real” or “synthetic”

 gB and dB compete and improve each other during training 

xREAL

yREALgBxSYN

dB fLOSS,B

fLOSS,B: Backward adversarial 
loss function
Good gB → large fLOSS,B
Good dB → small fLOSS,B

( ),max min ,
BB

LOSS B B Bdg
f g d
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 Cycle-consistency is introduced to avoid mode collapse
 ySYN synthesized from xREAL is mapped back to xCYC by gB

 xCYC and xREAL should satisfy cycle consistency: xCYC ≈ xREAL

 If cycle consistency holds, mode collapse cannot occur

Cycle-Consistent Generative Adversarial Network (CycleGAN)

gB

xREAL ySYN

xCYC

fLOSS,CYC

fLOSS,CYC: Cycle-consistent
loss function

( ),,
min ,

F B
LOSS CYC F Bg g

f g g

Mode collapse

Cycle consistency 
does not hold
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Cycle-Consistent Generative Adversarial Network (CycleGAN)

 Cycle consistency between yCYC and yREAL is similarly defined
 xSYN synthesized from yREAL is mapped back to yCYC by gF

 yCYC and yREAL should satisfy cycle consistency: yCYC ≈ yREAL

 A full loss function is formed to train CycleGAN composed of 
two generators and two discriminators

xSYN

gF

yREAL

yCYC

fLOSS,CYC

fLOSS,CYC: Cycle-consistent
loss function

( ),,
min ,

F B
LOSS CYC B Fg g

f g g

( )
( )
( )

( )
( )

, ,

,,
, ,

, ,
max min , , ,

, ,F BF B

LOSS F F F LOSS CYC F B
LOSS F F B Bd dg g

LOSS B B B LOSS CYC B F

f g d f g g
f g d g d

f g d f g g
λ

+ +   
= − ⋅   
      

Weight
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Outline

 Motivation
 Proposed approach
 Experimental results
 Conclusions
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Experimental Setup

 Network settings
 Each generator is composed of 12 CNN and ResNet blocks based 

on [Zhu 2017]
 Each discriminator is implemented with a PatchGAN network

composed of 4 blocks
 Experimental setup

 Stop sign detection for autonomous driving
 Consider nominal dataset from [BelgiumTS], [GTSDB] and 

[GTSRB] and high temperature corner based on physical modeling
 A cascade classifier is trained by using nominal data and validated 

for both nominal and corner cases

[Zhu 2017]: Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV, 2017
[BelgiumTS]: Traffic sign recognition - how far are we from the solution, IJCNN, 2013
[GTSDB]: Detection of traffic signs in real-world images: the German traffic sign detection benchmark, 
IJCNN, 2013
[GTSRB]: Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition, Neural 
Networks, 2012
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Temperature Variations

 Several examples of actual and synthetic images at high 
temperature are shown for comparison purposes

xREAL (room 
temperature)

ySYN (high 
temperature)

yREAL (high 
temperature)

xCYC (room 
temperature)
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Temperature Variations

 STOP sign detection is validated at high temperature
 Full dataset (golden): 164K high-temperature images
 Small dataset (conventional): 2K high-temperature images
 Hybrid dataset (proposed): 2K high-temperature images and 162K 

synthetic images

Conventional method with 
few test data cannot 

accurately capture the 
system failure rate
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Failure rate 1st 2nd 3rd Total

Full dataset
True positive 97.50% 97.50% 98.50% 93.64%
False positive 14.67% 6.42% 5.85% 5.51×10-4

Small dataset
True positive 97.50% 97.50% 98.50% 93.64%
False positive 5.60% 8.57% 0.00 0.00

Hybrid dataset
True positive 97.50% 97.50% 98.50% 93.64%
False positive 14.76% 5.27% 4.78% 3.72×10-4

Temperature Variations

 Estimation error of false positive rate is reduced by 100× and 1.86×
for the first- and second-stage classifiers

 Conventional method with small dataset results in zero false 
positive rate for the third-stage classifier
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Conclusions

 Test cases must broadly cover all possible scenarios for 
accurate system validation
 Physically observing extreme corners is difficult and expensive

 Propose a cycle-consistent generative adversarial network 
(CycleGAN) to generate synthetic test cases
 Simultaneously train two generators and two discriminators
 Accurately estimate true positive rate and false positive rate (up 

to 100× error reduction)

 Future work
 Synthesize test cases for multiple scenarios
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