SOUND VALVE-CONTROL FOR PROGRAMMABLE MICROFLUIDIC DEVICES

Andreas Grimmer¹, Berislav Klepic¹, Tsung-Yi Ho², Robert Wille¹ ¹ Johannes Kepler University, Linz, Austria ² National Tsing Hua University, Taiwan

Contact: andreas.grimmer@jku.at

MICROFLUIDIC LABS-ON-CHIP

Source: http://miter.mit.edu/articlecommercial-microfluidicswandering-desert-or-entering-promised-land/

- Reduced sample volume
- High-throughput
- Complex applications: protein crystallization, immunoassays, DNA-synthesizing, etc.

PROGRAMMABLE MICROFLUIDIC DEVICE

Luis M Fidalgo and Sebastian J Maerkl. A softwareprogrammable microfluidic device for automated biology. *Journal on Lab on a Chip*, 2011.

J⊻U

- Each node consists of four valves (red blocks)
- A node provides a full control of the flow to and from adjacent nodes
- A node is used as reaction vessel
- Realization consists of 64×300 pico-liter nodes
- Controlled by 114 individually addressable valves

REALIZING APPLICATIONS ON PMDS

 $in_2 in_3$ Source **S**1 52 d_1 d_2 $out_{15} out_{14}$

- Considered Task: Control valves
- In order to push the sample through the grid, a continuous flow path is required
- In one time step, a sample is pushed one node further in the flow path

.

- Flow paths must not intersect
- Overall: Push all samples to their target positions by determining flow paths in each required time step

MOTIVATION AND RELATED WORK

- Determining a valve-control is a difficult task because of
 - □ limited resources
 - (area, operations, inputs, outputs)
 - $\hfill\square$ overall time steps should be minimized
- \rightarrow Use of automatic design solution

Development of a **sound** valve-control for PMDs

Result obtained from "A routability-driven flow routing algorithm for programmable microfluidic devices" by Yi-Siang Su et al. in *ASP-DAC*, 2016.

PROPOSED APPROACHES

Heuristic

Standard VLSI Maze routing

								8						
							8	7	8					
		_		_		8	7	6	7	8				
						7	6	5	6	7	8			
				T	7	6	5	4	5	6	7	8		
			8	7	6	5	4	3	4	5	6	7	8	
		8	7	6	5	4	3	2	3	4	5	6	7	8
	8	7	6	5	4	3	2	1			6	7	8	
		6	5	4	3	2	1	S				8		
			6	5	4	3	2	1						
1		8	7	6	5	4	3							
			8	7	6	5	4	5						
				8	7	6	5							
					8	7	6	7						
						8	7	8						
1							8							

EXACT: SYMBOLIC FORMULATION

For each sample *s* and time *t*:

- Positions: $pos_s^t = \{(pos_s^t[i], x, pos_s^t[i], y) : 0 \le i < l\}$
- Inputs and Outputs: in_s^t , out_s^t
- Bends: $bend_{s}^{t} = \{(bend_{s}^{t}[i], x, bend_{s}^{t}[i], y) : 0 \le i < 2 * k\}$

Example:

 $pos_{s}^{0} = \{(1,2), (1,1)\}\$ $in_{s}^{0} = 2, out_{s}^{0} = 15\$ $bend_{s}^{0} = \{(2,0), (1,0), (1,5), (5,5)\}\$

$$pos_{s}^{0} = \{(3,2), (3,1)\}$$
$$in_{s}^{0} = 3, out_{s}^{0} = 14$$
$$hom d^{0} = \{(2,0), (2,0), (3,1)\}$$

 $bend_s^0 = \{(3,0), (3,0), (3,4), (6,4)\}$

EXACT: CONSTRAINTS

All samples s have to

start on their starting position

$$\bigwedge_{s\in S} pos_s^0 = src_s$$

reach their target at some time
$$t_t$$

$$\bigwedge_{s \in S} \exists t_t \left(0 \le t_t < T \land \bigwedge_{t_t \le t < T} pos_s^t = tgt_s \right)$$

Discussion:

 $0 \le pos_s^t[i].x < W \land 0 \le pos_s^t[i].y < H$ Full consideration how samples can concurrently be pushed on the PMD

- \rightarrow Results in huge search space
- Applicable on adjacent in postances

BUT: Useful for evaluating heuristic solution

$$\bigwedge_{s \in S} \bigwedge_{0 \leq t < T} \underbrace{(pos_s^t[0].x = pos_s^{t-1}[0].x \land pos_s^t[0].y = pos_s^{t-1}[0].y - 1)}_{Up_s^t}$$

ions
$$\lor \underbrace{(\dots)}_{Down_s^t} \lor \underbrace{(\dots)}_{Left_s^t} \lor \underbrace{(\dots)}_{Right_s^t} \lor \underbrace{(\dots)}_{Pause_s^t}$$

PROPOSED APPROACHES

HEURISTIC

Applied simplifications:

- Samples flow continuously from source to target
- Determine flow path for each sample one after another

Implications:

 Cannot guarantee a solution within a certain amount of time steps

But this solution is still sound!

Procedure:

Three sub-paths are required:

- From any input to the "tail" of the sample source
- From the "head" of the sample source to the "tail" of the sample target
- From the "head" of the sample target to any output
- → Application of a standard
 routing algorithm, namely maze
 routing with a rip-up and reroute
 method

EVALUTATION – QUALITY

Number of timesteps

EVALUTATION – COMPARISON TO RELATED WORK

Case

10x10; 5 Samples 10x10; 10 Samples 20x20; 20 Samples 30x30; 30 Samples 40x40; 40 Samples 50x50; 50 Samples

[1] Yi-Siang Su et al., "A routability-driven flow routing algorithm for programmable microfluidic devices" in ASP-DAC, 2016.

CONCLUSION

Limitations:

- Does not consider physical properties (i.e. applied pumping pressure, fluids,...)
- Considers only valve-control

Open Source:

http://www.jku.at/iic/eda/pmd

SOUND VALVE-CONTROL FOR PROGRAMMABLE MICROFLUIDIC DEVICES

Andreas Grimmer¹, Berislav Klepic¹, Tsung-Yi Ho², Robert Wille¹ ¹ Johannes Kepler University, Linz, Austria ² National Tsing Hua University, Taiwan

Contact: andreas.grimmer@jku.at