Scheduling and Shaping of Complex Task Activations for Mixed-Criticality Systems

*Biao Hu, [†]Kai Huang

*College of Information Science and Technology Beijing University of Chemical Technology

[†]School of Data and Computer Science Sun Yat-Sen University

Biao Hu, Kai Huang (BUCT, SYSU)

Scheduling and Shaping

23. January 2018 1 / 25

Content

Introduction

- Background of MCS
- Problem of Often Assumed Task Model
- New Task Activation Model
- Schedulability Analysis 3
 - Problem Definition
 - Motivation Example

Schedule Conditions

- Shaping Approach
 - Shaping Workflow
 - Updating LO-B
- Results 5
 - Evaluations Setup
 - Schedulability Test Results

< 47 ▶

Shaping Results

b) A = b

Content

Introduction

- Background of MCS
- Problem of Often Assumed Task Model
- New Task Activation Model
- Schedulability Analysis
 - Problem Definition
 - Motivation Example

- Schedule Conditions
- 4 Shaping Approace
 - Shaping Workflow
 - Updating LO-B
- 5 Results
 - Evaluations Setup
 - Schedulability Test Results

< □ > < □ > < □ > < □ > < □ > < □ >

Shaping Results

Nowadays...

Due to reducing the SWaP (space, weight and power), embedded systems are evolving into mixed-criticality systems (MCS). A mixed criticality system is one that has two or more distinct levels.

• Can be safety critical, mission critical and low-critical.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Nowadays...

Due to reducing the SWaP (space, weight and power), embedded systems are evolving into mixed-criticality systems (MCS). A mixed criticality system is one that has two or more distinct levels.

- Can be safety critical, mission critical and low-critical.
- Up to 5 levels defined in DO-178B standards.
 - A-level:catastrophic; B-level: hazardous; C-level: Major; D-level: Minor; E-level: No effect;

Nowadays...

Due to reducing the SWaP (space, weight and power), embedded systems are evolving into mixed-criticality systems (MCS). A mixed criticality system is one that has two or more distinct levels.

- Can be safety critical, mission critical and low-critical.
- Up to 5 levels defined in DO-178B standards.
 - A-level:catastrophic; B-level: hazardous; C-level: Major; D-level: Minor; E-level: No effect;

Main issue in MCS is that

Nowadays...

Due to reducing the SWaP (space, weight and power), embedded systems are evolving into mixed-criticality systems (MCS). A mixed criticality system is one that has two or more distinct levels.

- Can be safety critical, mission critical and low-critical.
- Up to 5 levels defined in DO-178B standards.
 - A-level:catastrophic; B-level: hazardous; C-level: Major; D-level: Minor; E-level: No effect;

Main issue in MCS is that

 How to reconcile the conflicting requirements of tasks with different criticality.

(日) (四) (日) (日) (日)

Sporadic Task τ_i

• *T_i*: period (minimum arrival interval)

A (10) N (10)

Sporadic Task τ_i

- *T_i*: period (minimum arrival interval)
- D_i : relative deadline $(D_i \leq T_i)$

A (10) N (10)

Sporadic Task τ_i

- *T_i*: period (minimum arrival interval)
- D_i : relative deadline $(D_i \leq T_i)$
- L_i: criticality level (dual criticality: LO, HI).

- T

Sporadic Task τ_i

- *T_i*: period (minimum arrival interval)
- D_i : relative deadline $(D_i \leq T_i)$
- L_i: criticality level (dual criticality: LO, HI).
- $C_i(L_i)$: worst-case execution time depending on criticality
 - LO-critical task: C_i(LO)
 - HI-critical task: $C_i(HI) \ge C_i(LO)$.

▲ □ ▶ ▲ 三 ▶ ▲ 三

Sporadic Task τ_i

- *T_i*: period (minimum arrival interval)
- D_i : relative deadline $(D_i \leq T_i)$
- L_i: criticality level (dual criticality: LO, HI).
- $C_i(L_i)$: worst-case execution time depending on criticality
 - LO-critical task: C_i(LO)
 - HI-critical task: $C_i(HI) \ge C_i(LO)$.

Model limitation

• Cannot handle blocking, jitter, burst activations and arbitrary deadline.

э

A D N A B N A B N A B N

Sporadic Task τ_i

- *T_i*: period (minimum arrival interval)
- D_i : relative deadline $(D_i \leq T_i)$
- L_i: criticality level (dual criticality: LO, HI).
- $C_i(L_i)$: worst-case execution time depending on criticality
 - LO-critical task: C_i(LO)
 - HI-critical task: $C_i(HI) \ge C_i(LO)$.

Model limitation

- Cannot handle blocking, jitter, burst activations and arbitrary deadline.
- Pessimistic assumption.
 - Transform a periodic with jitter task to a task with shorter period.

A D N A B N A B N A B N

Content

Introduction

- Background of MCS
- Problem of Often Assumed Task Model

New Task Activation Model

- Schedulability Analysis
- Problem Definition
- Motivation Example

- Schedule Conditions
- 4 Shaping Approace
 - Shaping Workflow
 - Updating LO-B
- 5 Results
 - Evaluations Setup
 - Schedulability Test Results

< □ > < □ > < □ > < □ > < □ > < □ >

Shaping Results

Task Activation Bound: Arrival Curve

Arrival Curve: Denote R[s, t) as the number of events that arrive on an event stream in the time interval [s, t). Then, $\overline{\alpha}^u$ and $\overline{\alpha}^l$ represents the upper and lower bound on the number of event in any interval t - s, that is,

$$\overline{lpha}^{\prime}(t-s) \leq R[s,t) \leq \overline{lpha}^{u}(t-s), orall t \geq s \geq 0,$$

with $\overline{\alpha}^{\prime}(\Delta) \geq 0$, $\overline{\alpha}^{u}(\Delta) \geq 0$ for $\forall \Delta \in \mathbb{R}^{\geq 0}$.

• Generalizes conventional event stream models, such as sporadic, periodic, periodic with jitter, and arbitrary event streams.

Task Activation Bound: Arrival Curve

Arrival Curve: Denote R[s, t) as the number of events that arrive on an event stream in the time interval [s, t). Then, $\overline{\alpha}^u$ and $\overline{\alpha}^l$ represents the upper and lower bound on the number of event in any interval t - s, that is,

$$\overline{lpha}^l(t-s) \leq R[s,t) \leq \overline{lpha}^u(t-s), orall t \geq s \geq 0,$$

with $\overline{\alpha}^{\prime}(\Delta) \geq 0$, $\overline{\alpha}^{u}(\Delta) \geq 0$ for $\forall \Delta \in \mathbb{R}^{\geq 0}$.

- Generalizes conventional event stream models, such as sporadic, periodic, periodic with jitter, and arbitrary event streams.
- For instance, for the arbitrary events modeled with the period p, the jitter j, and the minimum inter arrival distance d between successive two events, its upper arrival curve is

$$\overline{\alpha}^{u}(\Delta) = \min\{\lceil \frac{\Delta+j}{p}\rceil, \lceil \frac{\Delta}{d}\rceil\}.$$

Task Activation Bound: Minimum Distance Function

A similar bound to the upper arrival curve

Minimum Distance Function: The minimum distance function $\delta(q)$ is a pseudo super-additive function, which returns a lower bound on the time interval between the first and the last event of any sequence of q + 1 event occurrences.

 The minimum distance function is an inverse description of upper arrival curve. For example, δ(k) = Δ_k denotes that, the first and the last event of any sequence of k + 1 events is at least Δ_k time units apart, i.e., α(δ(k)) = k + 1.

Two Ideas

- Schedulability Test of Complex Task Activations for Mixed-Criticality Systems
- Shaping Task Activation Events to Improve the QoS of Low-critical Tasks.

Two Ideas

- Schedulability Test of Complex Task Activations for Mixed-Criticality Systems
- Shaping Task Activation Events to Improve the QoS of Low-critical Tasks.

Content

3

Introduction

- Background of MCS
- Problem of Often Assumed Task Model
- New Task Activation Model

Schedulability Analysis

- Problem Definition
- Motivation Example

- Schedule Conditions
- 4 Shaping Approace
 - Shaping Workflow
 - Updating LO-B
- 5 Results
 - Evaluations Setup
 - Schedulability Test Results

< □ > < □ > < □ > < □ > < □ > < □ >

Shaping Results

Problem Formulation

Arbitrarily Activated Task τ_i

- α_i^u or $\delta_i(q)$: arrival curve or minimum distance function
- D_i: relative deadline
- L_i: criticality level (dual criticality: LO, HI).
- $C_i(L_i)$: worst-case execution time depending on criticality
 - LO-critical task: $C_i(LO)$
 - HI-critical task: $C_i(HI) \ge C_i(LO)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Problem Formulation

Arbitrarily Activated Task τ_i

- α_i^u or $\delta_i(q)$: arrival curve or minimum distance function
- D_i: relative deadline
- L_i: criticality level (dual criticality: LO, HI).
- $C_i(L_i)$: worst-case execution time depending on criticality
 - LO-critical task: C_i(LO)
 - HI-critical task: $C_i(HI) \ge C_i(LO)$.

Problem Definition

 Given a dual-criticality task set, is it possible to schedule this task set by fixed-priority.

A task set $\tau = \{\tau_1, \tau_2, \tau_3\}$ as follows

$ au_i$	Li	$C_i(LO)$	$C_i(HI)$	Di	$\overline{\alpha}_{i}^{u}\left(p,j,d\right)$
τ_1	LO	3	-	7	(10, 30, 2)
τ_2	HI	5	10	35	(30, 50, 10)
$ au_3$	HI	20	40	300	(100,220,5)

3

イロト イヨト イヨト イヨト

A task set $\tau = \{\tau_1, \tau_2, \tau_3\}$ as follows

$ au_i$	Li	$C_i(LO)$	$C_i(HI)$	Di	$\overline{\alpha}_{i}^{u}\left(p,j,d\right)$
τ_1	LO	3	-	7	(10, 30, 2)
τ_2	HI	5	10	35	(30, 50, 10)
$ au_3$	HI	20	40	300	(100,220,5)

A task set $\tau = \{\tau_1, \tau_2, \tau_3\}$ as follows

$ au_i$	Li	$C_i(LO)$	$C_i(HI)$	Di	$\overline{\alpha}_{i}^{u}\left(p,j,d\right)$
τ_1	LO	3	-	7	(10, 30, 2)
τ_2	HI	5	10	35	(30, 50, 10)
$ au_3$	HI	20	40	300	(100,220,5)

The as-early-as-possible arrival pattern under the task model assumption $\tau_{1} \xrightarrow{\uparrow} 0 \xrightarrow{} 0$

Biao Hu, Kai Huang (BUCT, SYSU)

A task set $\tau = \{\tau_1, \tau_2, \tau_3\}$ as follows

$ au_i$	Li	$C_i(LO)$	$C_i(HI)$	D_i	$\overline{\alpha}_{i}^{u}\left(p,j,d ight)$
τ_1	LO	3	-	7	(10, 30, 2)
τ_2	HI	5	10	35	(30, 50, 10)
$ au_3$	HI	20	40	300	(100,220,5)

The as-early-as-possible arrival pattern under the task model assumption τ_1 10 12 14 16 18 20 9 10 8 20 au_2 τ_2 10.20 10 20 30 40 50 70 80 60 90100 40 70 100 au_3 au_3 5 10 15 20 25 35 40 30 50 45 80 180 Sporadic arrival pattern Arrival-curve arrival pattern impossible to be scheduled

Biao Hu, Kai Huang (BUCT, SYSU)

A task set $\tau = \{\tau_1, \tau_2, \tau_3\}$ as follows

$ au_i$	Li	$C_i(LO)$	$C_i(HI)$	D_i	$\overline{\alpha}_{i}^{u}\left(p,j,d ight)$
τ_1	LO	3	-	7	(10, 30, 2)
τ_2	HI	5	10	35	(30, 50, 10)
$ au_3$	HI	20	40	300	(100,220,5)

Biao Hu, Kai Huang (BUCT, SYSU)

Schedule Conditions

Demand Bound Function

The demand-bound function $dbf(\tau_i, \Delta)$ gives an upper bound on the maximum possible execution demand of the task τ_i in any time interval of length Δ , where demand is calculated as the total amount of required execution time of events with their whole scheduling windows within the time interval.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Schedule Conditions

Demand Bound Function

The demand-bound function $dbf(\tau_i, \Delta)$ gives an upper bound on the maximum possible execution demand of the task τ_i in any time interval of length Δ , where demand is calculated as the total amount of required execution time of events with their whole scheduling windows within the time interval.

Schedulable Conditions

$$\begin{array}{ll} \text{Condition } 1: \forall \Delta \geq \mathsf{0}: & \sum_{\tau_i \in \tau} \mathrm{dbf}_{\mathrm{LO}}(\tau_{\mathrm{i}}, \bigtriangleup) \leq \Delta, \\ \text{Condition } 2: \forall \Delta \geq \mathsf{0}: & \sum_{\tau_i \in H l(\tau)} \mathrm{dbf}_{\mathrm{HI}}(\tau_{\mathrm{i}}, \bigtriangleup) \leq \Delta. \end{array}$$

where Δ represents the supply of a dedicated unit-speed uniprocessor.

DBF in LO and HI modes

Demand-Bound Function in LO mode

If the system is in LO mode, every task behaves as a normal task with parameters ($\alpha_i(\Delta) \text{ or } \delta_i(q)$, $C_i(LO)$, $D_i(LO)$). According to the framework of real-time calculus, a tight demand bound function of a task τ_i is that

$$dbf_{LO}(\tau_i, \Delta) = \alpha_i (\Delta - D_i(LO)) \cdot C_i(LO).$$
(2)

DBF in LO and HI modes

Demand-Bound Function in LO mode

If the system is in LO mode, every task behaves as a normal task with parameters ($\alpha_i(\Delta) \text{ or } \delta_i(q)$, $C_i(LO)$, $D_i(LO)$). According to the framework of real-time calculus, a tight demand bound function of a task τ_i is that

$$dbf_{LO}(\tau_i, \Delta) = \alpha_i (\Delta - D_i(LO)) \cdot C_i(LO).$$
(2)

Demand-Bound Function in HI mode

The demand-bound function of HI mode is thus concluded as follows:

$$\mathrm{dbf}_{\mathrm{HI}}(au_i,\Delta) = (k+1) \cdot C_i(HI) - [C_i(LO) - (\Delta - \delta_i'(k))]_0,$$

where

$$\delta_i'(k) = \left\{ egin{array}{cc} k \cdot C_i(LO), & k \leq h \ h \cdot C_i(LO) + \delta_i(k) - \delta_i(h), & k > h, \end{array}
ight.$$

where $\delta_i(h+1) - \delta_i(h) > C_i(LO)$, $k \in \mathbb{N}^+$.

(3)

Two Ideas

- Schedulability Test of Complex Task Activations for Mixed-Criticality Systems
- Shaping Task Activation Events to Improve the QoS of Low-critical Tasks.

Two Ideas

- Schedulability Test of Complex Task Activations for Mixed-Criticality Systems
- Shaping Task Activation Events to Improve the QoS of Low-critical Tasks.

Content

- Background of MCS
- Problem of Often Assumed
- - Problem Definition
 - Motivation Example

Schedule Conditions

4 Shaping Approach

- Shaping Workflow
- Updating LO-B
- - Evaluations Setup
 - Schedulability Test Results

< □ > < □ > < □ > < □ > < □ > < □ >

Shaping Results

Steps:

э

イロト イヨト イヨト イヨト

Steps:

First of all, we set up a LO-B timer that constrains how much a LO-critical task can run in HI mode.

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Steps:

- First of all, we set up a LO-B timer that constrains how much a LO-critical task can run in HI mode.
- Suppose at a time t[⊥], the system starts to run a LO-critical task; meanwhile the LO-B timer starts to decrease.

・ 何 ト ・ ヨ ト ・ ヨ ト

Steps:

- First of all, we set up a LO-B timer that constrains how much a LO-critical task can run in HI mode.
- Suppose at a time t[⊥], the system starts to run a LO-critical task; meanwhile the LO-B timer starts to decrease.
- In a case that this task does not finish till the LO-B timer times out (time instant t[⊢]), the system will update LO-B. The new updated LO-B will either allow this task to run further if the new LO-B is greater than zero, or drop it otherwise.

Biao Hu, Kai Huang (BUCT, SYSU)

Scheduling and Shaping

23. January 2018 17 / 25

Steps:

In another case that this task finishes before LO-B timer times out (time instant t[¬]), LO- timer will hold its current value at the task finishing time and be used for shaping future LO-critical tasks.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Updating LO-B

Based on the task procrastination technique, the LO-B is computed as follows

$$\rho^*(t) = \max\Big\{\rho: [\Delta - \rho]_0 \ge \sum_{\tau_i \in \tau^H} \mathrm{dbf}_{\mathrm{HI}}(\tau_i, \Delta, t), \ \forall \Delta \ge 0\Big\}, \quad (4)$$

where LO-B is set to $\rho^*(t)$.

Content

Introduction

- Background of MCS
- Problem of Often Assumed Task Model
- New Task Activation Model
- Schedulability Analysis
 - Problem Definition
 - Motivation Example

- Schedule Conditions
- A Shaping Approa
 - Shaping Workflow
 - Updating LO-B

5 Results

- Evaluations Setup
- Schedulability Test Results

< □ > < □ > < □ > < □ > < □ > < □ >

Shaping Results

Evaluations Setup

Testing approaches

- AC-sched: Our proposed approaches that cover the schedulability test towards sporadic and arbitrary activation tasks.
- Greedy: The greedy tuning approach that is also based on the demand-bound function.
- AMC-max: The test via the response-time calculation for fixed-priority scheduling.
- EDF-VD: The approach that is also based on the virtual deadlines. However, EDF-VD scales down the deadlines at the same margin for all HI-critical tasks.
- AC-Shaping: The shaping approach that we proposed for improving the QoS to LO-critical tasks.

(日) (四) (日) (日) (日)

Generating Tasks

The task is set as *pjd* pattern because *pjd* pattern can represent the burst and jitter. There are four parameters that will be studied, i.e., $(\mathcal{P}, \mathcal{X}, \mathcal{Y}, \mathcal{Z})$, whose meanings are listed in the following.

 In generating a task set, the probability of a random task being a HI-critical task is *P*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Generating Tasks

The task is set as *pjd* pattern because *pjd* pattern can represent the burst and jitter. There are four parameters that will be studied, i.e., $(\mathcal{D}, \mathcal{X}, \mathcal{Y}, \mathcal{A})$ where meanings are listed in the following

 $(\mathcal{P}, \mathcal{X}, \mathcal{Y}, \mathcal{Z})$, whose meanings are listed in the following.

- In generating a task set, the probability of a random task being a HI-critical task is *P*.
- ② The jitter j_i is set as X · p_i, where p_i and j_i are the parameters p and j. Besides, X ∈ [0.5, 4.5].

Generating Tasks

The task is set as pjd pattern because pjd pattern can represent the burst and jitter. There are four parameters that will be studied, i.e.,

 $(\mathcal{P}, \mathcal{X}, \mathcal{Y}, \mathcal{Z})$, whose meanings are listed in the following.

- In generating a task set, the probability of a random task being a HI-critical task is *P*.
- **2** The jitter j_i is set as $\mathcal{X} \cdot p_i$, where p_i and j_i are the parameters p and j. Besides, $\mathcal{X} \in [0.5, 4.5]$.
- The minimum inter distance d_i is set as $\mathcal{Y} \cdot p_i$, where d_i is the parameter d. Besides, $\mathcal{Y} \in [0.1, 1]$.

Generating Tasks

The task is set as pjd pattern because pjd pattern can represent the burst and jitter. There are four parameters that will be studied, i.e.,

 $(\mathcal{P}, \mathcal{X}, \mathcal{Y}, \mathcal{Z})$, whose meanings are listed in the following.

- In generating a task set, the probability of a random task being a HI-critical task is *P*.
- **2** The jitter j_i is set as $\mathcal{X} \cdot p_i$, where p_i and j_i are the parameters p and j. Besides, $\mathcal{X} \in [0.5, 4.5]$.
- The minimum inter distance d_i is set as $\mathcal{Y} \cdot p_i$, where d_i is the parameter d. Besides, $\mathcal{Y} \in [0.1, 1]$.
- The relative deadline is set as that $D_i(LO) = D_i(HI) = \mathbb{Z} \cdot p_i$, where $\mathbb{Z} \in [0.5, 5]$.

3

Results

Schedulability Test Results

Irregularly activated tasks

Schedulability Test Results

• AC-sched has the same performance as Greedy on scheduling sporadic tasks.

Schedulability Test Results

- AC-sched has the same performance as Greedy on scheduling sporadic tasks.
- AC-shed performs much better for irregularly activated tasks than other approaches.

Biao Hu, Kai Huang (BUCT, SYSU)

23. January 2018 22 / 25

Shaping Results

• AC-Shaping reduces the dropped jobs to less than one fourth of the other scheduling approaches.

Shaping Results

Computation Overhead of Shaping

• As shown on a logarithmic scale in the above figure, with the increase of task set size, the computation expense increases. But even for a task set with 30 tasks, the average computation expense is only a little more than 1 ms.

Thank you! Q&A

Biao Hu, Kai Huang (BUCT, SYSU)

Scheduling and Shaping

23. January 2018 25 / 25

2

イロト イヨト イヨト イヨト