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o Convolutional neural networks (CNNSs) are reaching record-breaking Execution time of a sample CNN for scene labeling on
accuracy in image recognition on small data sets like MNIST, SVHN and ffzgiirr‘]dof:)iﬂeim‘éﬂﬁgOCZ?LLalj’tzrtif‘)'xvaﬁ‘foﬁ"r‘;‘zss most
CIFAR-10 with accuracy rates of 99.79%, 98.31% and 96.53% [1].

o On the large data-sets like ImageNet, ResNet shows a prominent Input Image pooling layer
recognition accuracy (96.43%) even higher than humans! (94.9%). ' %@)

o Following the trend, when going deeper in CNNs (e.g. ResNet employs
18-1001 layers), memory/computational resources and their
communication have faced inevitable limitations called “CNN power and
memory wall”) [1,2].

Convolutional layer. _ Fully-connected layer (FC)

o Several methods have been proposed to break the wall:
A. Compressing pre-trained networks,
B. Quantizing parameters, and 7
C. Binarization M=K
D. Prunning kernels
Wi Output fmaps
Input fmaps P P
[1] R. Andriet al., “Yodann: An architecture for ultra-low power binary-weight cnn acceleration,” IEEE TCAD, 2017 Visua“zation Of Inference in CNN

[2] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, 2017.
[3] L. Cavigelli et al., “Accelerating real-time embedded scene labeling with convolutional networks,” in DAC, 2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1-6.
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MOTIVATION (DEVICE)-TECHNOLOGY TREND

More Moore
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o Energy efficient and high performance computing hardware development is beginning to stall fundamentally
due to limitations in both devices and architectures.

o First, the current computing platforms primarily depend on Complementary Metal Oxide Semiconductor
(CMOS) technology, which is reaching its power wall
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» Energy hungry data transfer v Parallel, local data processing

» Long memory access latency v" Short memory access latency

» Limited memory bandwidth v' Ultra-low energy

v Programmable, Low cost/ area

o There is an urgent need to investigate fundamentally different devices and architectures for information processing
and data storage with the ability to continuously deliver energy efficient and high performance computing solutions.

[1] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory,” in ISCA, vol. 43, 2016.
[2] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” in 2016 53nd DAC. IEEE, 2016.. 5
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STT-MRAM =Magnetic Tunnel Junction (MTJ) owns

high/low resistance with respect to its free
layer magnetization configuration.

=Current-induced Spin Transfer Torque (STT)
MTJ switching scheme

v o =LA Key Advantages
Eﬁi&'ﬂ“ﬁ;ﬁi’;ﬁ;‘ﬂ E;g Lg =Non-volatility
Free Layer Parallel Anti-Parallel. . .
State (P State (AP: *High density
Re-> ‘0’ Rap -> ‘1"

*No leakage power

<«---)» Write current

----- » Read current Operaion &Y(rjfﬁ) - *|_imitations
L WL A WL Vo [ Voo | =Write asymmetry
‘: .'\ E A BL GND (VDD) Iscnsc . A . . .
g ﬂl_-,—f_. SL_ | Voo (GND) | GND =Reliability-limited write speed
S|l = =Read write optimization conflicts
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SOT-MRAM
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IWRITE
Writ
Operations ‘1 ’?‘10?) Read
WWL Vbp 0
RWL 0 Vbbp
RBL 0 IREAD
WBL Vivr(ViwN) 0
SL 0 0

Pinned Layer Write ‘0’ Write ‘1’
Tunneling barrier © O
Free Layer
Heavy Metal
<
- [ 4
IS:HSH(&x]q) "V 1| 1—sech| £
HM sf
= Energy-efficient write " Requires two access
= Decoupled R/W current transistors
paths = Switching PMA MTJ
= Separate optimization for requires FL engineering
Read and for Write that involves fabrication
challenge
h, Y, _ )

[1] G. Prenat et al., “Beyond stt-mram, spin orbit torque ram sot-mram for high speed and high reliability applications,” in Spintronics-based Computing. Springer, 2015.
[2] C.-F. Pai et al., “Spin transfer torque devices utilizing the giant spin hall effect of tungsten,” Applied Physics Letters, 2012.

The bit-cell structure of 2T1R SOT-
MRAM and its biasing conditions
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IN-MEMORY PROCESSING PLATFORM

Dual mode architecture that perform both memory read-write and AND/ ~ ==================-

OR logic operations.
Memory Write: 1. WWL1 should be activated by the Row Decoder and

Ri1

Rm1

SL1 is grounded. 2. To write ‘1’ (/ ‘0’), the voltage driver (V1) connected '

with WBL1 is set to positive (/negative) write voltage.

charge current (~120 pA)
1ns switching speed

WBL1

Memory Read: 1. RWL1 is activated while SL1 is grounded. 2. The

Column Decoder activates the RBL1 line to be connected to the SA. 3.
a read current flows from the SOT-MRAM cell to ground, generating a

sense voltage, which is compared with V ;1 V.. o <V <Vigree ap
where: (ENM , ENavo s ENOR) =(1,0,0)

Row Decoder (W/R/L)

ensing Parallel
Resistance

Layout of two

SOT-MRAM cells

@
@
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Rbz2=Rm: +Rmisc

32A

10A , 10A

oy SO
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Metall Metal2 Polysilicon

N-diffusion GSHE Metal

24\

)
Computing Mode: Every two bits stored in the identical column can be
selected and sensed simultaneously. Through selecting different
reference resistances (EN,,, EN .5, ENgz) , the SA can perform basic indicated
in-memory Boolean functions (i.e. AND and OR).

10

Proposed SOT-MRAM based dual-mode in-memory processing
architecture. The layout of two adjacent SOT-MRAM cells is also
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IN-MEMORY PROCESSING PLATFORM

For AND operation, R is set at the midpoint of R, || R, =(1,0) and
RAP ” RAP =(1,1)
For OR operation, R is set at the midpoint of R, || R, and R || R,

We have performed Monte-Carlo simulation with 100000 trials. A
& = 5% variation is added on the Resistance-Area product (RA:),
and aoc =10% process variation is added on the TMR.

Sense Margin will be reduced by increasing the logic fan-in (i.e. number
of parallel memory cells).

To avoid read failure, only two fan-in in-memory logic is used in this
work.
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Monte Carlo simulation result
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BIT-WISE CONVOLUTIONAL NEURAL NETWORK

Feature Maps

Feature Maps

 DoReFa-Net [1] proposes to employ low bitwise convolutions (weights

and activations/gradients) during forward/backward passes to [t = g 0

d
accelerate both training and inference. X F lly-
Input  Convolution Convolutlon ub- Connected
Image samplmg sampling
« Quantize floating point convolution into bit-wise convolution with (a) Act, ‘P/oolf- Act. Act. Class.
limited accuracy loss for large scale IMAGENET benchmark in A cru \1“
different configurations. 0% :
GPU
. Convolutions H
«  Such bit-wise convolution could be totally implemented within our others (b) 0% 0% 40%  60% 80%  100%

proposed accelerator using IMCE.
Oln]lk][x]ly] =

Fp-1F,,-1C-1
ReLU(BIK] + Z Z Zl[n] AUy +1][U + ] M—1N-1
iz j=0 z=0 ‘ I«W = Z Z 2" " bitcount(and(C (W), Com (1))
X WIk][z][[]), m=0 n=0

K 2 H2 L : L
_ D<n<NO<k<Ko g FWalsy< _ Low bit-width fixed-point integers dot-product
Typical dot-product operation of convolutional layer developed by DoReFa-NET

[1] S. Zhou et al., “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016. 13
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IN-MEMORY CONVOLUTION ENGINE
CONCEPT AND IMPLEMENTATION

o A potential solution to better address storage, computation, and
data transfer bottlenecks of CNNs.

o This architecture mainly consists of Image Bank, Kernel Bank, bit-
wise In-Memory Convolution Engine (IMCE), and Digital
Processing Unit (DPU).

o Preprocessing:
v'/Assume Input fmaps (1) and Kernels (W) are stored in Image Banks
and Kernel Banks of memory.

v'Inputs need to be constantly quantized before mapping into
computational sub-arrays. This step is performed using DPU’s
Quantizer and then the results are mapped to IMCE’s sub-arrays.

v IMCE is realized through the proposed SOT-MRAM based
computational sub-array.
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(a) General overview of the proposed CNN accelerator with
image bank, kernel bank, computational sub-arrays, and DPU,
(b) Bit-wise IMCE’s sub-array.
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IN-MEMORY CONVOLUTION ENGINE
CONCEPT AND IMPLEMENTATION

o The main idea is to exploit logic AND, bitcount, and bitshift as rapid and
parallelizable operations to accelerate the MACs in convolutional layers.

o Operation:

» | is a sequence of M-bit input integers (3-bit, here) located in input fmap
covered by sliding kernel of W, such that |, € | is a 3-bit vector
representing a fixed-point integer (e.g. 3 = “0117)

»We index the bits of each I element from LSB to MSB with m = [O,M - 1],
such that m = 0 and m = M - 1 are corresponding to LSB and MSB.

» A second sequence Cx(l) including the combination of mth bit of all I
elements (shown by colored elliptic) (e.g. Co(l) vector is “01107). Thus | can

be written as: M-1
1=> 2"C.(I)
»Same procedure is applied to W as a sequence of N-bit weight integers
(3-bit, herein) to make: W = Z Lon C, (W)

» In this way, the convolution between | and W can be defined as:
M—-1N-1

I+W = Z Z 2" " bitcount (and(

m=0 n=0

Cn (W), Cn(1)))

W ‘

I
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\ (1) data organization and mapping
W «WI-bk «N-bit> 1 5 1 4
0 1]2-- 15| 0 |o/ojo 1 001 HOTTTIOTT c2(w)
3 2514 |1 Jojola! ., _|5|_[1ax]  W[oejojor c1(w)
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b 2| |ol1/o a4l 100 c2(1)
I+« W=16 yavi -
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(2) bit-wise parallel AND (3) bitcount and shift
O[AT0l1]c2w) o[o]o]0
elolalolcyw) 0oJol1]0
T-"1'.”1‘1'.l M‘-ilr'()‘= co(w) Ol1[1]0
OO [0/ 0] C2(1) g g g g
offo ] ci) oToToTo
o[l jo] o)
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ololololciw). c2() 10
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c2(w). c2(l) 100
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Mapping method and operations of bit-wise IMCE.
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IN-MEMORY CONVOLUTION ENGINE
CONCEPT AND IMPLEMENTATION

Mapping C2(W)-C0O(W) to the designated sub-array rows,
Mapping C2(1) — CO(l) in the following memory rows in the same way,

Performing bit-wise parallel AND operation of C.(W) and Cx(l) using the
proposed SOT-MRAM computational sub-array,

The Bit-Counter readily counts the number of “1”s and passes it to the
Shifter unit,

The Shifter left-shifts input data by specific number of bits, here
“0001”, as result of Bit-Counter is left-shifted by 3-bit ( x2%*) to “1000”,

Eventually, Sum unit adds the Shifter unit’s outputs to produce the
output fmaps,

The output fmaps coming from convolutional layer can be later
processed for down-sampling using average pooling performed using
Sum and Shifter units.

(1) data organization and mapping

I W «M-bit» <N-bit> 1 5 1 a4
o 112. M1 5| 0| (o/o|o! 1| 001 0[] C2(w)
13 2/5*||1 4 1| _lojola BEINE Y w0 oioifior] c1(w)
423, - _3“0|1|1 W=l1[lo01| > L T LU O] co(w)
iR 2| |ol1/o) 4 100 c2(1)
I« W=16 YAVAY, - g
Cat Catty Cotty - Cawi Crwy Cowy 1 uﬂ 0 1 gtilm
01 3 2
(2) bit-wise parallel AND (3) bitcount and shift
Of1]0]1]|caw) 0j0jJ0O]JO
W‘gouocuw; 0jol1]0
T 705 co(w) 0l1[1]0
) 1] ! 0 U 0 U
O/ TOZ[07] c2(1) TaToto
I (oot ca) ototToto
0 (I [[11]o] cofi)
0 ['0 [Y0 ['0 |corw) . c2(1) > 1c2(w). i)
010 0 |corw) . c1(i)
011 0 |co(w) . cofl)
0]0]0]0]|ciw).c2(i) Lo
ololololciw).ci
0lolo0]0 cz{w).cr.:(? 241 10
c2(w). c2(1) 100
C2(w). cif) #1000
C2(w). cofi) 10000

Mapping method and operations of bit-wise IMCE.
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DIGITAL PROCESSING UNIT (DPU)

o Quantizer: This unit quantizes a real number input ri [0, 1] to a k-

bit number output r. [0, 1] using quantization Function:
ro = ﬁround(@k —1)r;)

o Batch-Norm.: Batch Normalization layer alleviates the in
formation loss during quantization by normalizing the input batch
to have zero mean and unit variance.

Ii(R) — p Y+ B

o Activ. Function: The proper selection of activation function has a
profound impact on network prediction accuracy specially in lower
bit-width CNN. This unit can be reconfigured to perform two

distinct activation functions (tanh(z)+1, sign(x))
2

Io(R) =

Image Bank:

DPU

_,l[ Quanti:_evrj ( Activ. Function ][Batch-Norm]._J

-
v % 1IMCEV Y 1 !
= [ sub-arrayita [ IMCE [ arrayen| |
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Fu <l i [Yshifter ¥shifter | . 10utpu
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PERFORMANCE EVALUATION

Device to System Level Simulations:

Device Level:
Verilog-A model of 3T SHE-MTJ device was developed to co-simulate with the interface CMOS circuits in

SPICE to validate the functionality and evaluate performance of the proposed design.

Circuit Level:
45nm North Carolina State University (NCSU) Product Development Kit (PDK) [1] library is used in SPICE to

verify the proposed design and evaluate the performance.

System Level:
We employ the modified self-consistent NVSim [2] along with an in-house developed C++ code to verify the

performance of memory.

[1] www:eda.ncsu.edu/wiki/FreePDK45
[2] X. Dong et al., "NVSim: A circuit-level performance, energy, and area model for emerging non-volatile memory,” Springer, 2014, pp. 15-50. 19
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Test error of CNN model for processing SVHN in different
P E R FO R MAN C E EVAL UATI O N bit-width configuration and Evolution of prediction accuracy vs. epoch.
,.;OO #:* ="‘5* s zy @ =k =l
Config. Complexity Test Error é 7 7
W I Inference Training CNN Model > 80 ¢ f,
2032 (P ; 24% 3 [
Accuracy: L1 1 9 3% 3ol )
1 2 2 10 2.6% ::) : !
Bit-width configuration: Six bit-width configurations of W:l L : ! 2% s ol "'%122_22 |
(32:32, 1:1, 1:2, 1:3, 1:4, and 2:2) are considered. The 8-bit s 5y 0 8% B |4 i
gradient is applied to all configurations except 32:32. () The computation complexity of 3232 is 3 9 1" 1:3
not shown, since it is not computationally ot n 1:2
efficient to perform bit-wise convolution of 32:32 A ..
Model: A CNN with 6 (bit-wise) convolutional layers, 2 (average) configuration [3] and it is already reported in 0*F— ‘ —
previous works. O 20 40 60 80 100

pooling layers and 2 FC layers that cost about 80 FLOPs for a Epoch

40%x40 image. FC layers are equivalently implemented by
o Complexity of inference and training are achieved using W x |

convolutions.
: W x|+ W x ivelv.
Data-set: The SVHN. The cropped format of colored images and G, respectively
(32x32) centered around each single digit is selected. o Experiments show that inputs and gradients are progressively

Training: Modification on open source algorithm by DoReFa- more sensitive to bit-width changes.
tl\éitr’]:;’euiiotgt;ggr;p;[;m;:ggz? da;\?eg';%rr]ent_gggpmog;el s © The accuracy in different configurations after modifications is
9 9- almost matched with reported data in DoReFA-NET.

trained on TensorFlow [1].

[1] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016. 20
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PERFORMANCE EVALUATION = - x|
s bitwidth configuration: =E.m“fjl \_,400 Il Convl
- 3 Wl -(33:; 1 QL I Conv2
L 3 Bl N
§ 2 Eggﬁi; : = Ml Convs
wn B Conv7 x 200 ,«\,6 5 -g:t)11\'6
. o 1.5 precision degradation [ ]Conv8| e D(“’ll"?
Main Memory Storage: 2 N S oo [ Coms
205 A = -
L : ) .
o As shown, lower bit-width the CNN model is, less memory R o e
storage is required.
AlexNet-BCNN mapped to our proposed accelerator requires (@) (b)
o PP _ p P q Memory storage (inputs/weights) required by:
39.7MB memory storage which is 12x and 6x less compared to (@) CNN model for processing SVHN,

(b) AlexNet architecture for processing ImageNet.

double precision (DP) and single precision (SP) CNNSs.

. . . 4
Energy Consumption Estimation: o x10° = oxl
g 2 ; ‘-W_/R-and \:lbitcountl:|add|
g .8
o The intensity of AND operations processed by IMCE makes the = Z 157
most fraction of energy consumption (up to 65%). & s
| | | | = =
o 1stun-quantized convolutional layer is the most computationally <ZJ: 0.5
intensive one and the size of computations is diminished for S =
next layers after quantization. S 5 0
>_/ . o _ _ 201 12 13 14 22 - 1:1 122 1:3 1:4 222
o According to system and application constraints, the designer (a) (b)
can ChOOSG dlﬁerent Conflguratlons conS|der|ng the accuracy (a) Break-down of no. AND operations in bit-wise IMCE for processing SVHN data-set,
and energy Consumption trade-offs_ (b) Energy distribution under varying configurations.

21
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PERFORMANCE EVALUATION

Area Estimation:

o The experimental results show that the last two conv layers
(converted from fully-connected layers) take up the most part of
the area due the high number of weight parameter,

o IMCE imposes 15.4% area overhead to original memory chip. It
can be seen that modified row decoder and Sum unit contribute
more than 60% of area overhead.

SE
% 7
L 6 ] Sum
Ej 5 Wi s
;E 4 Wi Bit-Counter £
o3 i3] e ‘
~ «
2 L1:4) e /
1 22! B} Shifter
' ‘ ‘ x 107 '
0 2 4 6 5 8 add-on:control Y~ dd-on:row
Area Distribution (mm”~) add-on:drivers / decoder
(a) (b)

(a) Area distribution of conv. layers mapped to IMCE for processing
a single image of SVHN, (b) Breakdown of area overhead of IMCE.

22
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PERFORMANCE EVALUATION

Hardware Mapping Comparison:

o Comparison of two promising resistive memories (i.e. RRAM [8]
and SOT-MRAM herein) over three different data-sets in terms of
energy and area under 45nm technology node.

o The proposed accelerator exploiting bit-wise IMCE can process
Binary CNN (BCNN) over different datasets very efficiently.

o It processes binary-weight AlexNet [1] for ImageNet favorably with
785.25ud/img where ~ 3x and ~ 4% lower energy and area are
achieved, respectively, compared to RRAM-based design.

Performance Estimation of CNN and BCNN accelerators.

[1] M. Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” in European Conference on Computer Vision. Springer, 2016, pp. 525-542.

[8] T. Tang et al., “Binary convolutional neural network on rram,” in 22" ASP-DAC. IEEE, 2017, pp. 782-787.

ImageNet SVHN MNIST
Des;i Energy Area Energy Area Energy Area
csigns (uJfimg) | (mm?) | (pl/img) | (mm?) | (ud/img) | (mm?)
CNN;;]RAM 5444.85 | 2125 | 85042 | 009 | 1839 | 0.054
BCNIE]{RAM 227534 | 919 | 42521 | 0085 | 13.55 | 0.060
BCNN-SOT-MRAM | 785.25 2.12 135.26 0.01 0.92 0.009
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CONCLUSION

o In this work, we develop a new in-memory processing architecture based on SOT-MRAM, which
could be used as both non-volatile memory and reconfigurable in-memory logic.

o The new concept of bit-wise In-Memory Convolution Engine (IMCE) is then developed based on the
proposed in-memory processing architecture achieving 3 goals:

(1) All bitwise computation can be implemented within the proposed in-memory accelerator by eliminating massive
energy consumption of data communication in traditional architecture between memory and computing units (i.e.
CPU/GPU);

(2) Reducing the energy consumption of convolutional layers through utilizing energy efficient intrinsic in-memory
computation;

(3) Accelerating the inference task by employing in-memory parallelism.

o Our accelerator can process low bit-width AlexNet on ImageNet data-set favorably with
785.25ud/img, which consumes ~3x less energy than that of recent RRAM based counterpart.
Besides, the chip area is ~ 4% smaller.
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