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MOTIVATION (CNN WALL)
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o Convolutional neural networks (CNNs) are reaching record-breaking 

accuracy in image recognition on small data sets like MNIST, SVHN and 

CIFAR-10 with accuracy rates of 99.79%, 98.31% and 96.53% [1].

o On the large data-sets like ImageNet, ResNet shows a prominent 

recognition accuracy (96.43%) even higher than humans! (94.9%).

o Following the trend, when going deeper in CNNs (e.g. ResNet employs 

18-1001 layers), memory/computational resources and their 

communication have faced inevitable limitations  called ‘‘CNN power and 

memory wall”) [1,2]. 

o Several methods have been proposed to break the wall:

A. Compressing pre-trained networks,

B. Quantizing parameters, and

C. Binarization

D. Prunning

Execution time of a sample CNN for scene labeling on 

CPU and GPU [3]. Convolutional layer always takes most 

fraction of execute time and computational sources

Visualization of Inference in CNN[1] R. Andriet al., “Yodann:  An architecture for ultra-low power binary-weight cnn acceleration,” IEEE TCAD, 2017

[2] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, 2017.

[3] L. Cavigelli et al., “Accelerating real-time embedded scene labeling with convolutional networks,” in DAC, 2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.
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MOTIVATION (DEVICE)-TECHNOLOGY TREND
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o Energy efficient and high performance computing hardware development is beginning to stall fundamentally 

due to limitations in both devices and architectures. 

o First, the current computing platforms primarily depend on Complementary Metal Oxide Semiconductor 

(CMOS) technology, which is reaching its power wall 
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MOTIVATION (ARCHITECTURE)
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o There is an urgent need to investigate fundamentally different devices and architectures for information processing 

and data storage with the ability to continuously deliver energy efficient and high performance computing solutions.

[1] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory,” in ISCA, vol. 43, 2016.

[2] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” in 2016 53nd DAC. IEEE, 2016..
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SOT-MRAM
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The bit-cell structure of 2T1R SOT-

MRAM and its biasing conditions

[1] G. Prenat et al., “Beyond stt-mram, spin orbit torque ram sot-mram for high speed and high reliability applications,” in Spintronics-based Computing. Springer, 2015.

[2] C.-F. Pai et al., “Spin transfer torque devices utilizing the giant spin hall effect of tungsten,” Applied Physics Letters, 2012. 

Key Advantages

 Energy-efficient write

 Decoupled R/W current 

paths

 Separate optimization for 

Read and for Write

Limitations

 Requires two access 

transistors

 Switching PMA MTJ 

requires FL engineering 

that involves fabrication 

challenge
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IN-MEMORY PROCESSING PLATFORM
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o Dual mode architecture that perform both memory read-write and AND/ 

OR logic operations.

o Memory Write:  1. WWL1 should be activated by the Row Decoder and 

SL1 is grounded. 2. To write ‘1’ (/ ‘0’), the voltage driver (V1) connected 

with WBL1 is set to positive (/negative) write voltage.

o Memory Read:  1. RWL1 is activated while SL1 is grounded. 2. The 

Column Decoder activates the RBL1 line to be connected to the SA. 3. 

a read current flows from the SOT-MRAM cell to ground, generating a 

sense voltage, which is compared with       :

where:    

o Computing Mode:  Every two bits stored in the identical column can be 

selected and sensed simultaneously. Through selecting different 

reference resistances                                  , the SA can perform basic 

in-memory Boolean functions (i.e. AND and OR).

charge current (~120 µA)

1ns switching speed

refV , ,sense P ref sense APV V V 
( , , ) (1,0,0)M AND OREN EN EN 

( , , )M AND OREN EN EN

Proposed SOT-MRAM based dual-mode in-memory processing 

architecture. The layout of two adjacent SOT-MRAM cells is also 

indicated
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IN-MEMORY PROCESSING PLATFORM
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Monte Carlo simulation result

o For AND operation,       is set at the midpoint of                           and

o For OR operation,       is set at the midpoint of              and 

o We have performed Monte-Carlo simulation with 100000 trials. A       

variation is added on the Resistance-Area product          , 

and a               process variation is added on the TMR.

o Sense Margin will be reduced by increasing the logic fan-in (i.e. number 

of parallel memory cells). 

o To avoid read failure, only two fan-in in-memory logic is used in this 

work.

refR || (1,0)AP PR R 

|| (1,1)AP APR R 

refR ||P PR R ||P APR R

5%  ( )PRA

10% 
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BIT-WISE CONVOLUTIONAL NEURAL NETWORK
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• DoReFa-Net [1] proposes to employ low bitwise convolutions (weights 

and activations/gradients) during forward/backward passes to 

accelerate both training and inference.

• Quantize floating point convolution into bit-wise convolution with 

limited accuracy loss for large scale IMAGENET benchmark in 

different configurations.

• Such bit-wise convolution could be totally implemented within our 

proposed accelerator using IMCE.

[1] S. Zhou et al., “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

Low bit-width fixed-point integers dot-product

developed by DoReFa-NETTypical dot-product operation of convolutional layer



IN-MEMORY CONVOLUTION ENGINE
CONCEPT AND IMPLEMENTATION
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o A potential solution to better address storage, computation, and 

data transfer bottlenecks of CNNs. 

o This architecture mainly consists of Image Bank, Kernel Bank, bit-

wise In-Memory Convolution Engine (IMCE), and Digital 

Processing Unit (DPU).

o Preprocessing:

Assume Input fmaps (I) and Kernels (W) are stored in Image Banks 

and Kernel Banks of memory.

Inputs need to be constantly quantized before mapping into 

computational sub-arrays. This step is performed using DPU’s 

Quantizer and then the results are mapped to IMCE’s sub-arrays.

IMCE is realized through the proposed SOT-MRAM based 

computational sub-array. 
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(a) General overview of the proposed CNN accelerator with 

image bank, kernel bank, computational sub-arrays, and DPU, 

(b) Bit-wise IMCE’s sub-array.



IN-MEMORY CONVOLUTION ENGINE
CONCEPT AND IMPLEMENTATION
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o The main idea is to exploit logic AND, bitcount, and bitshift as rapid and 

parallelizable operations to accelerate the MACs in convolutional layers.

o Operation:

 I is a sequence of M-bit input integers (3-bit, here) located in input fmap
covered by sliding kernel of W, such that is a 3-bit vector 
representing a fixed-point integer (e.g. 3 = “011”)

We index the bits of each Ii element from LSB to MSB with m = [0,M − 1], 
such that m = 0 and m = M − 1 are corresponding to LSB and MSB. 

A second sequence Cm(I) including the combination of mth bit of all Ii

elements (shown by colored elliptic) (e.g. C0(I) vector is “0110”). Thus I can 
be written as:

Same procedure is applied to W as a sequence of N-bit weight integers 
(3-bit, herein) to make:

 In this way, the convolution between I and W can be defined as:
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IN-MEMORY CONVOLUTION ENGINE
CONCEPT AND IMPLEMENTATION
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1) Mapping C2(W)-C0(W) to the designated sub-array rows,

2) Mapping C2(I) − C0(I) in the following memory rows in the same way,

3) Performing bit-wise parallel AND operation of Cn(W) and Cm(I) using the 

proposed SOT-MRAM computational sub-array, 

4) The Bit-Counter readily counts the number of “1”s and passes it to the 

Shifter unit, 

5) The Shifter left-shifts input data by specific number of bits, here

“0001”, as result of Bit-Counter is left-shifted by 3-bit (         ) to “1000”,

6) Eventually, Sum unit adds the Shifter unit’s outputs to produce the 

output fmaps,

7) The output fmaps coming from convolutional layer can be later 

processed for down-sampling using average pooling performed using 

Sum and Shifter units.
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DIGITAL PROCESSING UNIT (DPU)
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o Quantizer: This unit quantizes a real number input ri [0, 1] to a k-

bit number output ro [0, 1] using quantization Function:

o Batch-Norm.: Batch Normalization layer alleviates the in 

formation loss during quantization by normalizing the input batch 

to have zero mean and unit variance.

o Activ. Function: The proper selection of activation function has a 

profound impact on network prediction accuracy specially in lower 

bit-width CNN. This unit can be reconfigured to perform two 

distinct activation functions (                  ,               )
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PERFORMANCE EVALUATION
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Device to System Level Simulations:

Device Level:
Verilog-A model of 3T SHE-MTJ device was developed to co-simulate with the interface CMOS circuits in

SPICE to validate the functionality and evaluate performance of the proposed design.

Circuit Level:
45nm North Carolina State University (NCSU) Product Development Kit (PDK) [1] library is used in SPICE to

verify the proposed design and evaluate the performance.

System Level:
We employ the modified self-consistent NVSim [2] along with an in-house developed C++ code to verify the

performance of memory.

[1] www:eda.ncsu.edu/wiki/FreePDK45

[2] X. Dong et al., ”NVSim: A circuit-level performance, energy, and area model for emerging non-volatile memory,” Springer, 2014, pp. 15-50.
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PERFORMANCE EVALUATION

20[1] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.
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Accuracy:

o Bit-width configuration: Six bit-width configurations of W:I 

(32:32, 1:1, 1:2, 1:3, 1:4, and 2:2) are considered. The 8-bit 

gradient is applied to all configurations except 32:32.

o Model: A CNN with 6 (bit-wise) convolutional layers, 2 (average) 

pooling layers and 2 FC layers that cost about 80 FLOPs for a 

40×40 image. FC layers are equivalently implemented by 

convolutions.

o Data-set: The SVHN. The cropped format of colored images 

(32×32) centered around each single digit is selected.

o Training: Modification on open source algorithm by DoReFa-

Net, we adopt batch normalization and different dropout 

techniques to accelerate and avoid over-fitting. The model is 

trained on TensorFlow [1].

Test error of CNN model for processing SVHN in different

bit-width configuration and Evolution of prediction accuracy vs. epoch.

o Complexity of inference and training are achieved using W × I 

and W × I + W × G, respectively.

o Experiments show that inputs and gradients are progressively 

more sensitive to bit-width changes.

o The accuracy in different configurations after modifications is 

almost matched with reported data in DoReFA-NET.   



PERFORMANCE EVALUATION
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Main Memory Storage:

o As shown, lower bit-width the CNN model is, less memory 

storage is required.

o AlexNet-BCNN mapped to our proposed accelerator requires 

39.7MB memory storage which is 12× and 6× less compared to 

double precision (DP) and single precision (SP) CNNs.

Energy Consumption Estimation:

o The intensity of AND operations processed by IMCE makes the 

most fraction of energy consumption (up to 65%).

o 1st un-quantized convolutional layer is the most computationally 

intensive one and the size of computations is diminished for 

next layers after quantization.

o According to system and application constraints, the designer 

can choose different configurations considering the accuracy 

and energy consumption trade-offs. 
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Memory storage (inputs/weights) required by:

(a) CNN model for processing SVHN,

(b) AlexNet architecture for processing ImageNet.

(a) Break-down of no. AND operations in bit-wise IMCE for processing SVHN data-set,

(b) Energy distribution under varying configurations.



PERFORMANCE EVALUATION
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o The experimental results show that the last two conv layers 

(converted from fully-connected layers) take up the most part of 

the area due the high number of weight parameter,

o IMCE imposes 15.4% area overhead to original memory chip. It 

can be seen that modified row decoder and Sum unit contribute 

more than 60% of area overhead.

Area Estimation:

23rd Asia and South Pacific Design Automation Conference (ASP-DAC)

(a) Area distribution of conv. layers mapped to IMCE for processing

a single image of SVHN, (b) Breakdown of area overhead of IMCE.



PERFORMANCE EVALUATION
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Hardware Mapping Comparison:

o Comparison of two promising resistive memories (i.e. RRAM [8] 

and SOT-MRAM herein) over three different data-sets in terms of 

energy and area under 45nm technology node.

o The proposed accelerator exploiting bit-wise IMCE can process 

Binary CNN (BCNN) over different datasets very efficiently. 

o It processes binary-weight AlexNet [1] for ImageNet favorably with 

785.25μJ/img where ~ 3× and ~ 4× lower energy and area are 

achieved, respectively, compared to RRAM-based design.

[1] M. Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks,” in European Conference on Computer Vision. Springer, 2016, pp. 525–542.

[8] T. Tang et al., “Binary convolutional neural network on rram,” in 22nd ASP-DAC. IEEE, 2017, pp. 782–787.
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Performance Estimation of CNN and BCNN accelerators.
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CONCLUSION

o In this work, we develop a new in-memory processing architecture based on SOT-MRAM, which 
could be used as both non-volatile memory and reconfigurable in-memory logic. 

o The new concept of bit-wise In-Memory Convolution Engine (IMCE) is then developed based on the 
proposed in-memory processing architecture achieving 3 goals:  

(1) All bitwise computation can be implemented within the proposed in-memory accelerator by eliminating massive 
energy consumption of data communication in traditional architecture between memory and computing units (i.e. 
CPU/GPU);

(2) Reducing the energy consumption of convolutional layers through utilizing energy efficient intrinsic in-memory 
computation;

(3) Accelerating the inference task by employing in-memory parallelism. 

o Our accelerator can process low bit-width AlexNet on ImageNet data-set favorably with 
785.25μJ/img, which consumes ~3× less energy than that of recent RRAM based counterpart. 
Besides, the chip area is ~ 4× smaller.
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