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Convolutional Neural Network
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Video Tracking
Object Detection

Speech Recognition

Natural Language Processing

CNN
APPLICATIONS
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Energy-efficient platforms are required

Deeper	Neural	Networks

Exponentially	Growing	Data	
Require	Faster,	more	energy-efficient

NN	Computing	Accelerators

Real-time	On-line	NN	Applications

TPU

GPU

DPU

Training	CNNs	is	time-and-energy-consuming
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Accelerating Inference is not enough
Training	DataBig	Data	

Training

Deploy

Server

Inference

Difficult	to
fully	generalized		

Application scenarios	
vary

On-line	training	and	learning	are	necessary
While	most	embedded	devices	are	energy-limited
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Memory Wall in von Neumann Architecture

Von-Neumann	Architecture

Controller

Memory ALU

Moore’s law no
longer works

Data are accumulated
even faster

Memory	Wall
Bottleneck	of	speed	and	energy

Too many memory accesses result in high power

Source: Song Han et al., “Learning…”, NIPS 2015



RRAM has become a promising candidate for NN training 
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RRAM-based NN Computing Systems

High	Density Plasticity:	Configure
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State-of-the-art

7-bit precision
101.10

101.10
Output Interfaces

Input Interfaces

High-precision data & weights are not 
supported in RRAM-based Systems

8bit ADC/DACs consume
>85% energy of the system

Low-bitwidth
Energy

Low-bitwidth
Easier-to-tune
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Training Low Bit-width CNN is Feasible

Binarized Neural	Networks	(BNN)
- Training	Neural	Networks	with	Weights	and	Activations Constrained	to	+1	or	-1
- Binary	Weights	and	Activations	(DNN)

XNOR-Net
- Both	the	filters	and	the	input to	convolutional	layers	are	binary	(CNN)

DoReFa-Net
- Using	low	bitwidth parameter	gradients	to	train	CNNs
- Can	accelerate	both	training	and	inference

[courbariaux2016binarynet]

[rastegari2016xnor]

[zhou2016dorefanet]
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Contributions

The	main	contributions	 of	this	work	include:
- In	this	paper,	we	propose	an	RRAM-based	low-bitwidth CNN	training	system.	

We	also	propose	the	algorithm of	training	low-bitwidth convolutional	neural	
networks,	to	enable	a	RRAM-based	system	to	implement	on-chip	CNN	training.	
And	quantization	 and	AD/DA	conversion	strategies	are	proposed	to	adapt	to	
RCS	and	improve	the	accuracy	of	CNN	model.

- We	explore	the	configuration	space	of	combinations	of	bitwidth of	activations,	
convolution	outputs,	weights,	and	gradients by	experiments	of	training	
LeNet-5	and	ResNet-20	on	proposed	system,	testing	over	the	MNIST	and	
CIFAR-10	datasets	respectively.	Moreover,	a	tradeoff of	balancing	between	
energy	overhead	and	prediction	accuracy	is	discussed.

- We	analyze	the	probability	distribution	 of	RRAM’s	stochastic	disturbance and	
make	experiments	 to	explore	the	effects	 of	the	disturbance	on	CNN’s	training.



p.	11

RRAM-based Low-bit CNN Training System
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Training Process-Inference

Low-bit	ADC
Output	Voltage	->	Digital	Number

Low-bit	DAC
Digital	Number	->	Input	Voltages

Feature	Map	from	bottom	layer

Cascaded	by	BatchNorm/ReLU/Pooling

Convolution
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Training Process-Backpropagation-1

Gradients	from	top	layer

Backpropagated through	Pooling/ReLU/BN

Low-bit	ADC
Output	Voltage	->	Digital	Number

Low-bit	DAC
Digital	Number	->	Input	Voltages

Gradient	w.r.t input

Gradients	w.r.t input
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Training Process-Backpropagation-2

Gradients	from	top	layer

Backpropagated through	Pooling/ReLU/BN

Low-bit	ADC
Output	Voltage	->	Digital	Number

Low-bit	DAC
Digital	Number	->	Input	Voltages

Gradient	w.r.tweights

Gradients	w.r.t weights
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Training Process-Parameters Update

Learning	rate momentum
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Quantization and AD/DA Conversion

• Quantizing floating-point x to k-bit fixed-point number

Uniform	quantization
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• Digital-to-Analog conversion strategy in the input 
interfaces of RRAM Crossbars

Quantization and AD/DA Conversion

Determined by	experiments
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• Analog-to-Digital conversion strategy in the output 
interfaces of RRAM Crossbars

Quantization and AD/DA Conversion

Determined by	experiments
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Experimental Results

• Benchmarks
– LeNet on	MNIST	dataset
– ResNet-20	on	CIFAR-10	dataset

• Evaluation
– Energy	efficiency
– Accuracy

• Disturbance	setup
– Default: Satisfying		!"#$%&'()*+,-./01

!"#$%&12310*1'
~𝑈[−5%,5%]

• Comparisons
– GPU:	NVIDIA	Titan	X	(Pascal)
– CPU:	Intel(R) Core(TM)	 i7-6900K	CPU	@	3.20GHz
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Experimental Results - Accuracy

Disturbance-
Tolerant

Better
Generalization
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Experimental Results - Accuracy

(32,6,6,6)	is	acceptable
But	not	good	enough
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Experimental Results - Tradeoff

Tradeoff:	Energy	&	Accuracy

Require	high	accuracy
With	adequate	energy

Energy-limited	
Don’t	need	high	accuracy

Consider	both	energy	and	accuracy
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Experimental Results - Energy

16.8x

23.0x

8.9x

4.4x

1.0x

1.0x
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Conclusion

Challenges:
- Can	not	efficiently support	high-precision	 data	&	weights
- Disturbance	on	RRAM’s	resistance

Solutions:
- Low-bit	CNN	training	system	&	algorithm	design
- Disturbance	analysis	and	noise-tolerant	training

Future	Work:
- Improving	the	training	algorithm	to	get	higher	accuracy
- Enabling	RRAM-based	logic	computing	
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