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Energy-efficient platforms are required

Training CNNs is time-and-energy-consuming
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Accelerating Inference is not enough
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On-line training and learning are necessary
p- While most embedded devices are energy-limited N If-S




Memory Wall in von Neumann Architecture

Memory Wall

Bottleneck of speed and energy

Moore’s law no
longer works
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Too many memory accesses result in high power

Relative Energy Cost

Operation Energy [pJ] Relative Cost
16 bit int ADD 0.06 1

16 bit FP ADD 0.45 8

16 bit int MULT 0.8 13

16 bit FP MULT 1.1 18

32b LPDDR2 DRAM 640 10667

1 10 100 1000 10000 >—
Source: Song Han et al., “Learning...”, NIPS 2015 N | *55)



RRAM-based NN Computing Systems

RRAM has become a promising candidate for NN training

Plasticity: Configure
with Voltage/Current

3D, CTF 3D, ReRAM

Matenal, Device concept & architecture

40 Array design
Planar cell NAND ‘ 3D NAND ‘ 3D ReRAM for ultimate scaling

Fig. 1 Path Towards Ultra High Density NVM
(Samsung, 5th Workshop on Innovative Memory Technologies)
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High-precision data & weights are not
supported in RRAM-based Systems

State-of-the-art
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Training Low Bit-width CNN is Feasible

Binarized Neural Networks (BNN) [courbariaux2016binarynet]
- Training Neural Networks with Weights and Activations Constrained to +1 or -1

- Binary Weights and Activations (DNN)

XNOR-Net [rastegari2016xnor]
- Both the filters and the input to convolutional layers are binary (CNN)

Network Variations Operations Memory Computation = Accuracy on
used in Saving Saving ImageNet
Convolution | (Inference) = (Inference) (AlexNet)
Real-Value Inputs
Standard : Real-Value Weights
Convolution | 0.11-0.21 ..-0.34"" oa || +,—,X 1x 1x %56.7
Input -0.250.61 ... 0.52~
Real-Value Inputs
h.
h "in :
. . I w - - - Binary Weight | 041021 .. 034" +, - ~32x ~2X %56.8
Weight -0.25061.. 052 |

)FNOR ’ ~32x ~58x %44.2
'l bitcount

DoReFa-Net [zhou2016dorefanet]
- Using low bitwidth parameter gradients to train CNNs
- Can accelerate both training and inference
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Contributions

The main contributions of this work include:

In this paper, we propose an RRAM-based low-bitwidth CNN training system.
We also propose the algorithm of training low-bitwidth convolutional neural
networks, to enable a RRAM-based system to implement on-chip CNN training.
And quantization and AD/DA conversion strategies are proposed to adapt to
RCS and improve the accuracy of CNN model.

We explore the configuration space of combinations of bitwidth of activations,
convolution outputs, weights, and gradients by experiments of training
LeNet-5 and ResNet-20 on proposed system, testing over the MNIST and
CIFAR-10 datasets respectively. Moreover, a tradeoff of balancing between
energy overhead and prediction accuracy is discussed.

We analyze the probability distribution of RRAM’s stochastic disturbance and
make experiments to explore the effects of the disturbance on CNN’s training.
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RRAM-based Low-bit CNN Training System
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Fig. 2: Framework of RRAM-based low-bitwidth CNN training system.
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Training Process-Inference

Feature Map from bottom layer
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Training Process-Backpropagation-1

Backpropagated through Pooling/ReLU/BN
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Training Process-Backpropagation-2
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Training Process-Parameters Update

Voltage
Weight Parameters 4'_ ')
Conv. ] %4- Look-up
Kernels <2 Table
«— 8
Feature
Low-bit Update Map il Cor;l‘l:‘;lte
Quantizi Gradient
b (d)
0J oJ
GetDeltaW(—.,yv.m)=AK =xv- — +m - AK
( 8 K y» Xy ) X 3 K last

Learning rate momentum

NS



Quantization and AD/DA Conversion

Quantizing floating-point x to k-bit fixed-point humber
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Quantization and AD/DA Conversion

 Digital-to-Analog conversion strategy in the input

interfaces of RRAM Crossbars
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Quantization and AD/DA Conversion

 Analog-to-Digital conversion strategy in the output
interfaces of RRAM Crossbars
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Experimental Results

Benchmarks
— LeNet on MNIST dataset
— ResNet-20 on CIFAR-10 dataset

Evaluation

— Energy efficiency
— Accuracy

Disturbance setup

. . Weightgi
— Default: Satisfying —2 td““”"b“"ceva[—S%,S%]
Weightexpected

Comparisons

— GPU: NVIDIA Titan X (Pascal)
— CPU: Intel (R) Core(TM) i7-6900K CPU @ 3.20GHz
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Experimental Results - Accuracy

TABLE I: The classification accuracy for MNIST test dataset with
different combinations of bitwidth in LeNet-5. A, CO, W, G are

bitwidth of activations, convouts, weights, and gradients.

Accuracy Accuracy
A 0O W G without disturbance  with disturbance
324 32 32 32 0.9914 X
8 8 8 8 [ 0.9828 0.9825 Disturbance-
6 6 6 6 I 09745 0.9733 Tolerant
4 4 4 4 | 09767 0.9797
3 3 2 4 I 0.9687 0.9736
2 2 2 2 0.9670 0.9752
5 s> 1 4 b ) Better
2 2 2 1 I 09633 0.9647 GTerallzatlon
11 2 1 W 09416 0.9375
1 1 1 1 - -

¢ bitwidth=32 means 32-bit floating-point numbers.

b >_> means failing to train a convergent model under such bitwidth.



Experimental Results - Accuracy
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Fig. 3: Error Rate Curves of ResNet-20 on CIFAR-10: Accuracy
Under Different Combinations of Bitwidth (A,CO,W,G).
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Experimental Results - Tradeoff

Require high accuracy

With adequate energy

Energy Overhead

(n)/img/iter)
407 '

23 )

8-8-8-8

Accuracy

/T Energy of Conv1
Energy of Conv2
Energy of FC1
Energy of FC2

6-6-6-6

Accuracy on MNIST

4-4-4-4

1

Consider both energy and accuracy

2-2-2-2

0.98

Energy-limited

Don’t need high accuracy

0.96

Tradeoff: Energy & Accuracy




Experimental Results - Energy

TABLE II: Energy Overhead Estimation of CNNs in Different
Training Platforms

Database Platform | CNN Model Energy(pJ /img/iter)
Conv+FC 7997.6 88.7%  16.8X
CpU“ Others 1015.6 LL3%
All 9013.2 100.0%
Conv+FC 11824.9 96.0%
MNIST GPU® LeNet-5 Others 4 23.0x
All 12316.2 0.0%
Conv+FC . 8.4%
RRAM Others a1 oige= 1-0X
All 536.26 0.0%
Conv+FC 4 779% L.
CPU Others 74414.1 2 0 8 ) 9X
All [—336037.5 1100.0%
Conv+FC | 133066.9 7194% | 4 4x
CIFAR-10 GPU ResNet-20 Others _ 20 )
All 167532.1 0.0%
Conv+FC . 9.6%
RRAM Others o 90. -1.0x
All 38118.9 0.0%

@ Intel(R) Core(TM) i7-6900K CPU @ 3.20GHz.
0.23 2 NVIDIA TITAN X (Pascal).



Conclusion

Challenges:

Can not efficiently support high-precision data & weights
Disturbance on RRAM'’s resistance

Solutions:

Low-bit CNN training system & algorithm design
Disturbance analysis and noise-tolerant training

Future Work:

Improving the training algorithm to get higher accuracy
Enabling RRAM-based logic computing
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