

Training Low Bit-width Convolutional Neural Networks on RRAM

<u>Yi Cai</u>, Tianqi Tang, Lixue Xia, Ming Cheng, Zhenhua Zhu, Yu Wang, Huazhong Yang

Dept. of E.E., Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China E-mail: yu-wang@tsinghua.edu.cn

Outline

- Background & Motivation
- RRAM-based Low-bit CNN Training System
 - Overall Framework
 - Quantization and AD/DA Conversion
- Experimental Results
- Conclusion and Future Work
- Reference

Convolutional Neural Network

Object Detection

Natural Language Processing

Energy-efficient platforms are required

Training CNNs is time-and-energy-consuming

Exponentially Growing Data

NN Computing Accelerators

Accelerating Inference is not enough

On-line training and learning are necessary While most embedded devices are <u>energy-limited</u>

Memory Wall in von Neumann Architecture

Too many memory accesses result in high power

Operation	Energy [pJ]	Relative Cost
16 bit int ADD	0.06	1
16 bit FP ADD	0.45	8
16 bit int MULT	0.8	13
16 bit FP MULT	1.1	18
32b LPDDR2 DRAM	640	10667

RRAM-based NN Computing Systems

RRAM has become a promising candidate for NN training

High-precision data & weights are not supported in RRAM-based Systems

Training Low Bit-width CNN is Feasible

Binarized Neural Networks (BNN) [courbariaux2016binarynet]

- Training Neural Networks with Weights and Activations Constrained to +1 or -1
- Binary Weights and Activations (DNN)

XNOR-Net [rastegari2016xnor]

- Both the filters and the input to convolutional layers are binary (CNN)

		Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Input Weight w win	Standard Convolution	Real-Value Inputs 0.11 -0.210.34 -0.25 0.61 0.52	+ , - , ×	1x	1x	%56.7
	Binary Weight	Binary Weights 0.11 -0.210.34 1 -1 1 -0.25 0.61 0.52 -1 1 1	+,-	~32x	~2x	%56.8
	BinaryWeig Binary Inpu (XNOR-Ne t	Binary Weights 1 -11 -1 1 1 Binary Weights 1 -1 1 -1 1 1	XNOR , bitcount	~32x	~58x	%44.2

DoReFa-Net [zhou2016dorefanet]

- Using low bitwidth parameter gradients to train CNNs
- Can accelerate both <u>training and inference</u>

Contributions

The main contributions of this work include:

- In this paper, we propose an <u>RRAM-based low-bitwidth CNN training system</u>.
 We also propose the <u>algorithm</u> of training low-bitwidth convolutional neural networks, to enable a RRAM-based system to implement on-chip CNN training.
 And <u>quantization and AD/DA conversion strategies</u> are proposed to adapt to RCS and improve the accuracy of CNN model.
- We explore the configuration space of combinations of <u>bitwidth of activations</u>, <u>convolution outputs</u>, <u>weights</u>, <u>and gradients</u> by experiments of training LeNet-5 and ResNet-20 on proposed system, testing over the MNIST and CIFAR-10 datasets respectively. Moreover, a <u>tradeoff</u> of balancing between energy overhead and prediction accuracy is discussed.
- We analyze the **probability distribution** of RRAM's stochastic **disturbance** and make experiments to explore the effects of the disturbance on CNN's training.

RRAM-based Low-bit CNN Training System

Fig. 2: Framework of RRAM-based low-bitwidth CNN training system.

NI

Training Process-Inference

Training Process-Backpropagation-1

Training Process-Backpropagation-2

Training Process-Parameters Update

$$\begin{split} \text{GetDeltaW}(\frac{\partial J}{\partial K},\chi,m) &= \Delta K = \chi \cdot \frac{\partial J}{\partial K} + m \cdot \Delta K_{last} \\ \text{Learning rate} \quad \text{momentum} \end{split}$$

NI

Quantization and AD/DA Conversion

• Quantizing floating-point x to k-bit fixed-point number

Quantization and AD/DA Conversion

 Digital-to-Analog conversion strategy in the input interfaces of RRAM Crossbars

Quantization and AD/DA Conversion

Analog-to-Digital conversion strategy in the output interfaces of RRAM Crossbars

Experimental Results

- Benchmarks
 - LeNet on MNIST dataset
 - ResNet-20 on CIFAR-10 dataset
- Evaluation
 - Energy efficiency
 - Accuracy
- Disturbance setup

- Default: Satisfying $\frac{Weight_{disturbance}}{Weight_{expected}} \sim U[-5\%, 5\%]$

- Comparisons
 - GPU: NVIDIA Titan X (Pascal)
 - CPU: Intel (R) Core(TM) i7-6900K CPU @ 3.20GHz

Experimental Results - Accuracy

TABLE I: The classification accuracy for MNIST test dataset with different combinations of bitwidth in LeNet-5. A, CO, W, G are bitwidth of activations, convouts, weights, and gradients.

А	CO	W	G	Accuracy without disturbance	Accuracy with disturbance	_
32^{a}	32	32	32	0.9914	*	-
8	8	8	8	0.9828	0.9825	Disturbance-
6	6	6	6	0.9745	0.9733	Tolerant
4	4	4	4	0.9767	0.9797	Toterant
3	3	2	4	0.9687	0.9736	
2	2	2	2	0.9670	0.9752	Detter
2	2	1	4	_b		Better
2	2	2	1	0.9633	0.9647 Ge	neralization
1	1	2	1	0.9416	0.9375	
1	1	1	1	-	-	•

^a bitwidth=32 means 32-bit floating-point numbers.

^b '-' means failing to train a convergent model under such bitwidth.

Experimental Results - Accuracy

Fig. 3: Error Rate Curves of ResNet-20 on CIFAR-10: Accuracy Under Different Combinations of Bitwidth (A,CO,W,G).

Experimental Results - Tradeoff

Experimental Results - Energy

TABLE II: Energy Overhead Estimation of CNNs in Different Training Platforms

Database	Platform	CNN Model	$Energy(\mu J/img/iter)$			
MNIST	CPU^{a}	LeNet-5	Conv+FC	7997.6	88.7%	- 16.8x
			Others	1015.6	11.3%	
			All	9013.2	100.0%	
	GPU ^b		Conv+FC	11824.9	96.0%	-23.0x
			Others	491.3	4.0%	
			All	12316.2	100.0%	
	RRAM		Conv+FC	44.96	8.4%	- 1 Ov
			Others	491.3	91.6%	1.08
			All	536.26	100.0%	
CIFAR-10		ResNet-20	Conv+FC	262523.4	77.9%	- 8 9x
	CPU		Others	74414.1	22 1%	UIUX
			All	336937.5	100.0%	
	GPU		Conv+FC	133066.9	79.4%	- 4 4x
			Others	34465.2	20.6%	
			All	167532.1	100.0%	
	RRAM		Conv+FC	3653.7	9.6%	-1 Ov
			Others	34465.2	90.4%	
			All	38118.9	100.0%	

^a Intel(R) Core(TM) i7-6900K CPU @ 3.20GHz.

^b NVIDIA TITAN X (Pascal).

Conclusion

Challenges:

- Can not efficiently support high-precision data & weights
- **Disturbance** on RRAM's resistance

Solutions:

- Low-bit CNN training system & algorithm design
- Disturbance analysis and noise-tolerant training

Future Work:

- Improving the training algorithm to get higher accuracy
- Enabling RRAM-based logic computing

Reference

[1] K. Simonyan et al., "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[2] J. Fan et al., "Human tracking using convolutional neural networks." IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1610–1623, 2010.

[3] G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[4] A. Karpathy et al., "Deep visual-semantic alignments for generating image descriptions," in Computer Vision and Pattern Recognition, 2015. [5] B. Li et al., "Merging the interface: Power, area and accuracy co- optimization for rram crossbar-based mixed-signal computing system,"

in DAC, 2015, p. 13.

[6] L. Xia et al., "Selected by input: Energy efficient structure for rram-based convolutional neural network," in DAC, 2016.

[7] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory," in ISCA, vol. 43, 2016.

[8] A. Shafiee et al., "Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars," in Proc. ISCA, 2016.

[9] F. Alibart et al., "High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm," Nanotechnology, vol. 23, no. 7, p. 075201, 2012.

[10] R. Degraeve et al., "Causes and consequences of the stochastic aspect of filamentary rram," Microelectronic Engineering, vol. 147, pp. 171–175, 2015.

[11] M. Courbariaux et al., "Binarized neural network: Training deep neural networks with weights and activations constrained to+1 or-1," arXivpreprint arXiv:1602.02830, 2016.

Reference

[12] M. Rastegari et al., "Xnor-net: Imagenet classification using binary convolutional neural networks," arXiv preprint arXiv:1603.05279, 2016.

[13] S. Zhou et al., "Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients," arXiv preprint arXiv:1606.06160, 2016.

[14] T. Tang et al., "Binary convolutional neural network on rram," in DesignAutomation Conference (ASP-DAC), 2017 22nd Asia and South Pacific. IEEE, 2017, pp. 782–787.

[15] M. Cheng et al., "Time: A training-in-memory architecture for memristor-based deep neural networks," in Proceedings of the 54th Annual Design Automation Conference 2017. ACM, 2017, p. 26.
[16] Z. Jiang et al., "A compact model for metal-oxide resistive random access memory with experiment verification," IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 1884–1892, 2016.
[17] S. Yu et al., "Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect," in Electron Devices Meeting (IEDM), 2015 IEEE International. IEEE, 2015, pp. 17–3.
[18] Y. LeCun et al., "Comparison of learning algorithms for handwritten digit recognition," in International conference on artificial neural networks, vol. 60. Perth, Australia, 1995, pp. 53–60.
[10] K. Ha et al., "Deep provide learning aforizing a prospective of the IEEE."

[19] K. He et al., "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[20] C. M. Bishop, "Training with noise is equivalent to tikhonov regularization," Neural computation, vol. 7, no. 1, pp. 108–116, 1995.

[21] A. F. Murray and P. J. Edwards, "Enhanced mlp performance and fault tolerance resulting from synaptic weight noise during training," IEEE Transactions on neural networks, vol. 5, no. 5, pp. 792–802, 1994.

[22] X. Dong et al., "Nvsim: A circuit-level performance, energy, and area model for emerging p.nonvolatile memory," TCAD, vol. 31, no. 7, pp.994–1007, 2012.

THANKS FOR WATCHING

