
THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGYTHE HONG KONG UNIVERSITY OF SCIECE AND TECHNOLOGY

A High-Throughput and Energy-Efficient RRAM-based
Convolutional Neural Network using Data Encoding and

Dynamic Quantization

The Hong Kong University of Science & Technology, Hong Kong

ASP-DAC 2018

Xizi Chen, Jingbo Jiang, Jingyang Zhu and Chi-Ying Tsui

2018-01-23
1

2

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

2

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

3

Introduction

Top-5 Error Rate (%) vs Depth (ILSVRC)

0

20

40

60

80

100

120

140

160

180

0

5

10

15

20

25

30

35

40

2010 2011 2012 2013 2014 2014 2015

8 layers

28.2
25.8

16.4

11.7

7.3 6.7
3.75

~20
layers

152
layers

ResNetGoogleNetAlexNet VGG

Large memory requirement &
intensive computations

of
layers

of
parameters

of multiply-accumulate
computations per image

152 60M 11G

Memory

Arithmetic
Computation

Control
Unit

Conventional CMOS-based Architecture

C. Nauenheim, et al. Integration of resistive switching devices in crossbar structures, 2017 4

RRAM-based Multiply-Accumulate Computation

G11

G21

G31

In-situ computation based on RRAM : an effective approach to the memory wall

V1

V2

V3

I1 = V1xG11 +
V2xG21 + V3xG31

Kernel size(K)

Input
activations

Output
activationsKernels

𝑯𝒐
𝑯𝒊

𝑾𝒊
𝑾𝒐

𝑪𝒊
𝑪𝒐

Stride (S)
Multiply

Accumulate

𝑰𝒋 =
𝒊=𝟏

𝑵

𝑮𝒊𝒋 𝑽𝒊

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

5

Shared
Memory

Buffer

MAC

Adder / ReLU

...

...

...
Sampling

Circuit

ADC

Shift-and-Add

MAC

MAC

...

(a)
(b)

DAC

Crossbar
(+)

Crossbar
(-)

horizontally:
different kernels

vertically:
each

flattened
kernel

Hardware Architecture

…

Input activations

Kernels

6

…

[1] A. Shafiee, et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ISCA, 14-26, 2016.

State-of-the-art architecture: ISAAC [1]

- Hierarchical structure

- 3-stage pipeline

7

Splitting the weights and input activations into sub-words

- High resolution DAC and ADC are costly in terms of power and area

a
c

b
d

…

Kernel

Weight mapping

𝒂𝟏𝟓,𝟏𝟒 𝒂𝟏𝟑,𝟏𝟐 𝒂𝟏𝟏,𝟏𝟎 𝒂𝟗,𝟖 𝒂𝟕,𝟔 𝒂𝟓,𝟒 𝒂𝟑,𝟐 𝒂𝟏,𝟎

𝒃𝟏𝟓,𝟏𝟒 𝒃𝟏𝟑,𝟏𝟐 𝒃𝟏𝟏,𝟏𝟎 𝒃𝟗,𝟖 𝒃𝟕,𝟔 𝒃𝟓,𝟒 𝒃𝟑,𝟐 𝒃𝟏,𝟎

𝒄𝟏𝟓,𝟏𝟒 𝒄𝟏𝟑,𝟏𝟐 𝒄𝟏𝟏,𝟏𝟎 𝒄𝟗,𝟖 𝒄𝟕,𝟔 𝒄𝟓,𝟒 𝒄𝟑,𝟐 𝒄𝟏,𝟎

𝒂𝒊 and 𝒃𝒊: sub-words of the weight

Weight Mapping & Input Scheduling

A
C D

B

Input scheduling

𝑨𝟎…𝑨𝟏𝟓 𝑨𝟏

𝑩𝟎…𝑩𝟏𝟓 𝑩𝟏

𝑪𝟎…𝑪𝟏𝟓 𝑪𝟏

𝑫𝟎…𝑫𝟏𝟓 𝑫𝟏

Distributed into
16 iterations

Cyc0Cyc15

Input
activations

- Limited precision of RRAM cells

7

Splitting the weights and input activations into sub-words

- High resolution DAC and ADC are costly in terms of power and area

a
c

b
d

…

Weight mapping

𝒂𝟏𝟓,𝟏𝟒 𝒂𝟏𝟑,𝟏𝟐 𝒂𝟏𝟏,𝟏𝟎 𝒂𝟗,𝟖 𝒂𝟕,𝟔 𝒂𝟓,𝟒 𝒂𝟑,𝟐 𝒂𝟏,𝟎

𝒃𝟏𝟓,𝟏𝟒 𝒃𝟏𝟑,𝟏𝟐 𝒃𝟏𝟏,𝟏𝟎 𝒃𝟗,𝟖 𝒃𝟕,𝟔 𝒃𝟓,𝟒 𝒃𝟑,𝟐 𝒃𝟏,𝟎

𝒄𝟏𝟓,𝟏𝟒 𝒄𝟏𝟑,𝟏𝟐 𝒄𝟏𝟏,𝟏𝟎 𝒄𝟗,𝟖 𝒄𝟕,𝟔 𝒄𝟓,𝟒 𝒄𝟑,𝟐 𝒄𝟏,𝟎

𝒂𝒊 and 𝒃𝒊: sub-words of the weight

A
C D

B

Input scheduling

𝑨𝟎…𝑨𝟏𝟓 𝑨𝟏

𝑩𝟎…𝑩𝟏𝟓 𝑩𝟏

𝑪𝟎…𝑪𝟏𝟓 𝑪𝟏

𝑫𝟎…𝑫𝟏𝟓 𝑫𝟏

Cyc0Cyc15

- Limited precision of RRAM cells

Kernel

Distributed into
16 iterations

Input
activations

Weight Mapping & Input Scheduling

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

8

9

Segmented Compression Encoding (SCE)

RRAM crossbar consumes ~20% energy

G11

G21

G31

V1

V2

V3

Reducing the conductance of the memristors
is a natural way for power saving

- Not a good idea

- Margin becomes smaller, making the
device variance and the noise of the
analog computation less tolerable…

Directly reducing the range of conductance

10

Reducing the energy while keeping the margin of the conductance levels
unchanged

Crossbar (+) Crossbar (-)

sw3 sw2 sw1 sw0 0 0 0 0
Original sub-words:

Weight: 0010_1110_1001_1100 b

>1000b

the middle value
of 0000b~1111b

sw0 = 1100 b

sw1 = 1001 b

sw2 = 1110 b

sw3 = 0010 b

Segmented Compression Encoding (SCE)

11

sw0 = 1100 b > 1000 b
→ = 10000 b – (10000 b – 1100 b)

= 10000 b – 0100 b

send as a carry
to sw1

sw1 = 1001 + 1 = 1010 b > 1000 b

0100

forward to
Crossbar(-)

Weight: 0010_1110_1001_1100 b
Crossbar (+) Crossbar (-)

0

sw2 = 1110 b

sw3 = 0010 b

Reducing the energy while keeping the margin of the conductance levels
unchanged

Segmented Compression Encoding (SCE)

12

sw0 = 1100 b
→ = 10000 b – (10000 b – 1100 b)

= 10000 b – 0100 b

sw1 = 1001 + 1 = 10000 b – 0110 b

0100

Weight: 0010_1110_1001_1100 b
Crossbar (+) Crossbar (-)

0

sw2 = 1110 b + 1 = 10000 b – 0001 b

sw3 = 0010 b + 1 = 0011 b

Reducing the energy while keeping the margin of the conductance levels
unchanged

Segmented Compression Encoding (SCE)

0 0110000100011

- Originally: 3 of the 4 sub-words > 1000b

- After SCE: all the sub-words≤ 1000b

0

13

Encoding is also applicable for input activations

Segmented Compression Encoding (SCE)

G11

G21

G31

V1

V2

V3

- Since DAC is 1-bit, the canonic signed digit (CSD) encoding is used

Input activation : 𝟎𝟎𝟏𝟎_𝟏𝟏𝟏𝟎_𝟏𝟎𝟎𝟏_𝟏𝟏𝟎𝟎 b

of non-zero bits = 8

13

Encoding is also applicable for input activations

Segmented Compression Encoding (SCE)

G11

G21

G31

V1

V2

V3

- Since DAC is 1-bit, the canonic signed digit (CSD) encoding is used

Input activation : 𝟎𝟎𝟏𝟎_𝟏𝟏𝟏𝟎_𝟏𝟎𝟎𝟏_𝟏𝟏𝟎𝟎 b

𝟎𝟏𝟎 𝟏_𝟎𝟎 𝟏𝟎_𝟏𝟎𝟏𝟎_𝟎 𝟏𝟎𝟎 b

of non-zero bits = 6

eliminate the
consecutive
‘1’s from LSB

𝟎𝟎𝟏𝟎_𝟏𝟏𝟏𝟎_𝟏𝟎𝟏𝟎_𝟎 𝟏𝟎𝟎 b

𝟎𝟎𝟏𝟏_𝟎𝟎 𝟏𝟎_𝟏𝟎𝟏𝟎_𝟎 𝟏𝟎𝟎 b

of non-zero bits = 8

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

14

15

Analog-to-Digital Interface Optimization

The high-precision A/D interface consumes ~50% energy & ~30% area

128 x 128
crossbar

Bit-resolution of ADC required in the worst case

𝑅 = 𝑙𝑜𝑔2128 𝑟𝑜𝑤𝑠 + 2 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑐𝑒𝑙𝑙 + 1 𝑠𝑖𝑔𝑛
= 10 𝑏𝑖𝑡

Power and area increase exponentially with ADC
resolution!

Splitting the weights and activations into sub-words

G11

G21

G31

V1

V2

V3

…

- A 1-bit by 2-bit multiplication is done at each
memristor cell

16

- High sparsity of activations and weights

 The worst-case bit-resolution is unnecessary

 A 6-bit ADC is enough to capture the correct
computation most of the time

- Range provided by the 10-bit ADC

- Around 99% of the bitline outputs

Distribution of the Bitline Output
(x axis: digital output y axis: intensity)

Analog-to-Digital Interface Optimization

 Using SCE can further reduce the resolution
by 1-bit

17

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

A. Shafiee, et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars, 14-26, 2016. 18

# of A/D conversions for calculating the outputs on MAC

16 # 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 128 # 𝑜𝑓 𝑏𝑖𝑡𝑙𝑖𝑛𝑒𝑠 = 2048

Iter 1
Iter 2
Iter 3

Iter 15 BL0 1 2 125 126 127...

ADC
Sampling

Cycle 0 1 2 ... 13 14 15 16 17 18 ... 29 30 31 32 33 34 ... 61 62 63 896 897 898 ... 1021 1022 1023

Xbar Cycle: 100ns

b) Proposed MAC Schedule
BL0 8 16 104 112 120...

Xbar Cycle: 12.5ns

BL0 8 16 104 112 120...

Xbar Cycle: 12.5ns

...
BL0 1 8 113 120 121...

Xbar Cycle: 25ns

(# of BL=16)

(# of BL=16)
(# of BL=32)

(# of BL=128)

BL - Bitline
Xbar - Crossbar
Iter - Iteration

a) ISAAC MAC Schedule

...

Iter 0
Iter 1
Iter 2

Iter 15

ADC
Sampling

Cycle

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

 0 1 2 ... 125 126 127 128 129 130 ... 253 254 255 256 257 258 ... 381 382 383 1920 1922 1923 ... 2045 2046 2047

- It takes 16 iterations to serially shift in the activation

MAC is the most time consuming part

MAC Rescheduling based on the Dynamic Quantization

19

MAC Rescheduling based on the Dynamic Quantization

𝒘𝟕 𝒘𝟓 𝒘𝟒 𝒘𝟑 𝒘𝟐 𝒘𝟏 𝒘𝟎𝒘𝟔

Let’s take a look at the first 4 iterations

weight

𝒂𝟎𝒘𝟕 𝒂𝟎𝒘𝟓 𝒂𝟎𝒘𝟒 𝒂𝟎𝒘𝟑 𝒂𝟎𝒘𝟐 𝒂𝟎𝒘𝟏 𝒂𝟎𝒘𝟎𝒂𝟎𝒘𝟔Iter0 (𝒊 = 𝟎)

2 bit

𝒃 = 𝟕 𝟔 𝟓 𝟒 𝟑 𝟐 𝟏 𝟎

19

MAC Rescheduling based on the Dynamic Quantization

𝒘𝟕 𝒘𝟓 𝒘𝟒 𝒘𝟑 𝒘𝟐 𝒘𝟏 𝒘𝟎𝒘𝟔

𝒂𝟎𝒘𝟕 𝒂𝟎𝒘𝟓 𝒂𝟎𝒘𝟒 𝒂𝟎𝒘𝟑 𝒂𝟎𝒘𝟐 𝒂𝟎𝒘𝟏 𝒂𝟎𝒘𝟎𝒂𝟎𝒘𝟔

𝒂𝟏𝒘𝟕 𝒂𝟏𝒘𝟓 𝒂𝟏𝒘𝟒 𝒂𝟏𝒘𝟑 𝒂𝟏𝒘𝟐 𝒂𝟏𝒘𝟏 𝒂𝟏𝒘𝟎𝒂𝟏𝒘𝟔

Let’s take a look at the first 4 iterations

Iter1 (𝒊 = 𝟏) +

Iter0 (𝒊 = 𝟎)

weight

1 bit

𝒘𝟐𝒂𝟎𝒘𝟐𝒂𝟏 𝒘𝟏𝒂𝟏 𝒘𝟏𝒂𝟎 𝒘𝟎𝒂𝟏 𝒘𝟎𝒂𝟎> > > > >

𝒊 + 𝟐𝒃 = 𝟓 𝟒 𝟑 𝟐 𝟏 𝟎

The significance of the partial product at each cell changes with (𝑖 + 2𝑏)

The lower the value, the less impact on the accuracy.

2 bit

𝒃 = 𝟕 𝟔 𝟓 𝟒 𝟑 𝟐 𝟏 𝟎

19

MAC Rescheduling based on the Dynamic Quantization

𝒂𝟏𝒘𝟕 𝒂𝟏𝒘𝟓 𝒂𝟏𝒘𝟒 𝒂𝟏𝒘𝟑 𝒂𝟏𝒘𝟐 𝒂𝟏𝒘𝟏 𝒂𝟏𝒘𝟎𝒂𝟏𝒘𝟔

𝒂𝟐𝒘𝟕 𝒂𝟐𝒘𝟓 𝒂𝟐𝒘𝟒 𝒂𝟐𝒘𝟑 𝒂𝟐𝒘𝟐 𝒂𝟐𝒘𝟏 𝒂𝟐𝒘𝟎𝒂𝟐𝒘𝟔

𝒂𝟑𝒘𝟕 𝒂𝟑𝒘𝟓 𝒂𝟑𝒘𝟒 𝒂𝟑𝒘𝟑 𝒂𝟑𝒘𝟐 𝒂𝟑𝒘𝟏 𝒂𝟑𝒘𝟎𝒂𝟑𝒘𝟔

Let’s take a look at the first 4 iterations

Iter1 (𝒊 = 𝟏)

Iter2 (𝒊 = 𝟐)

Iter3 (𝒊 = 𝟑)

+

+

+

𝒘𝟕 𝒘𝟓 𝒘𝟒 𝒘𝟑 𝒘𝟐 𝒘𝟏 𝒘𝟎𝒘𝟔

𝒂𝟎𝒘𝟕 𝒂𝟎𝒘𝟓 𝒂𝟎𝒘𝟒 𝒂𝟎𝒘𝟑 𝒂𝟎𝒘𝟐 𝒂𝟎𝒘𝟏 𝒂𝟎𝒘𝟎𝒂𝟎𝒘𝟔Iter0 (𝒊 = 𝟎)

weight

1 bit

2 bit

𝒃 = 𝟕 𝟔 𝟓 𝟒 𝟑 𝟐 𝟏 𝟎

𝒘𝟐𝒂𝟎𝒘𝟐𝒂𝟏 𝒘𝟏𝒂𝟏 𝒘𝟏𝒂𝟎 𝒘𝟎𝒂𝟏 𝒘𝟎𝒂𝟎> > > > >

𝒊 + 𝟐𝒃 = 𝟓 𝟒 𝟑 𝟐 𝟏 𝟎

The significance of the partial product at each cell changes with (𝑖 + 2𝑏)

The lower the value, the less impact on the accuracy.

Dynamic quantization: skipping the A/D conversions of those partial
products that have no significant impact on the accuracy

20

𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

𝑖𝑡𝑒𝑟0 (𝑖 = 0)

Skip all bitlines

MAC Rescheduling based on the Dynamic Quantization

𝒊: 𝑖𝑡ℎ iteration

b = 0 b = 1 b = 2

i = 0

i = 1

i = 2

i = 3

0 2 4

1 3 5

2 4 6

3 5 7

i = 4 4 6 8

b = 3

6

7

8

9

10

i = 5 5 7 9 11

...

...

...

...

...

...

...

...

b = 7

14

15

16

17

18

19

...

i = 15 15 17 19 21 ... 29

Value of 𝑖 + 2𝑏

𝒃: 𝑏𝑡ℎ bitline

𝒃𝒊𝒕𝒍𝒊𝒏𝒆 𝟎
(𝒃 = 𝟎)

Optimal threshold: 𝑖 + 2𝑏 ≤ 14

20

𝑖𝑡𝑒𝑟1 & 2 (𝑖 = 1, 2)

Skip all bitlines except 7

MAC Rescheduling based on the Dynamic Quantization

b = 0 b = 1 b = 2

i = 0

i = 1

i = 2

i = 3

0 2 4

1 3 5

2 4 6

3 5 7

i = 4 4 6 8

b = 3

6

7

8

9

10

i = 5 5 7 9 11

...

...

...

...

...

...

...

...

b = 7

14

15

16

17

18

19

...

i = 15 15 17 19 21 ... 29

Value of 𝑖 + 2𝑏 𝒃𝒊𝒕𝒍𝒊𝒏𝒆 𝟎
(𝒃 = 𝟎) 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

Dynamic quantization: skipping the A/D conversions of those partial
products that have no significant impact on the accuracy

Optimal threshold: 𝑖 + 2𝑏 ≤ 14𝒊: 𝑖𝑡ℎ iteration

𝒃: 𝑏𝑡ℎ bitline

20

𝑖𝑡𝑒𝑟3 & 4 (𝑖 = 3, 4)

Skip all bitlines except 6 & 7

MAC Rescheduling based on the Dynamic Quantization

b = 0 b = 1 b = 2

i = 0

i = 1

i = 2

i = 3

0 2 4

1 3 5

2 4 6

3 5 7

i = 4 4 6 8

b = 3

6

7

8

9

10

i = 5 5 7 9 11

...

...

...

...

...

...

...

...

b = 7

14

15

16

17

18

19

...

i = 15 15 17 19 21 ... 29

Value of 𝑖 + 2𝑏
𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

𝒃𝒊𝒕𝒍𝒊𝒏𝒆 𝟎
(𝒃 = 𝟎)

Dynamic quantization: skipping the A/D conversions of those partial
products that have no significant impact on the accuracy

Optimal threshold: 𝑖 + 2𝑏 ≤ 14𝒊: 𝑖𝑡ℎ iteration

𝒃: 𝑏𝑡ℎ bitline

20

𝑖𝑡𝑒𝑟15 (𝑖 = 15)

Reserve all the bitlines

MAC Rescheduling based on the Dynamic Quantization

b = 0 b = 1 b = 2

i = 0

i = 1

i = 2

i = 3

0 2 4

1 3 5

2 4 6

3 5 7

i = 4 4 6 8

b = 3

6

7

8

9

10

i = 5 5 7 9 11

...

...

...

...

...

...

...

...

b = 7

14

15

16

17

18

19

...

i = 15 15 17 19 21 ... 29

Value of 𝑖 + 2𝑏
𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

𝒃𝒊𝒕𝒍𝒊𝒏𝒆 𝟎
(𝒃 = 𝟎)

Dynamic quantization: skipping the A/D conversions of those partial
products that have no significant impact on the accuracy

Optimal threshold: 𝑖 + 2𝑏 ≤ 14𝒊: 𝑖𝑡ℎ iteration

𝒃: 𝑏𝑡ℎ bitline

Iter 1
Iter 2
Iter 3

Iter 15 BL0 1 2 125 126 127...

ADC
Sampling

Cycle 0 1 2 ... 13 14 15 16 17 18 ... 29 30 31 32 33 34 ... 61 62 63 896 897 898 ... 1021 1022 1023

Xbar Cycle: 100ns

b) Proposed MAC Schedule
BL0 8 16 104 112 120...

Xbar Cycle: 12.5ns

BL0 8 16 104 112 120...

Xbar Cycle: 12.5ns

...
BL0 1 8 113 120 121...

Xbar Cycle: 25ns

(# of BL=16)

(# of BL=16)
(# of BL=32)

(# of BL=128)

BL - Bitline
Xbar - Crossbar
Iter - Iteration

a) ISAAC MAC Schedule

...

Iter 0
Iter 1
Iter 2

Iter 15

ADC
Sampling

Cycle

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

 0 1 2 ... 125 126 127 128 129 130 ... 253 254 255 256 257 258 ... 381 382 383 1920 1922 1923 ... 2045 2046 2047

With a threshold of 𝑖 + 2𝑏 ≤ 14 : 50% of the A/D conversions are skipped.

of AD conversions for calculating the outputs on MAC:

16 # 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 128 # 𝑜𝑓 𝑏𝑖𝑡𝑙𝑖𝑛𝑒𝑠 × 50% = 1024

21

Iter 1
Iter 2
Iter 3

Iter 15 BL0 1 2 125 126 127...

ADC
Sampling

Cycle 0 1 2 ... 13 14 15 16 17 18 ... 29 30 31 32 33 34 ... 61 62 63 896 897 898 ... 1021 1022 1023

Xbar Cycle: 100ns

b) Proposed MAC Schedule
BL0 8 16 104 112 120...

Xbar Cycle: 12.5ns

BL0 8 16 104 112 120...

Xbar Cycle: 12.5ns

...
BL0 1 8 113 120 121...

Xbar Cycle: 25ns

(# of BL=16)

(# of BL=16)
(# of BL=32)

(# of BL=128)

BL - Bitline
Xbar - Crossbar
Iter - Iteration

a) ISAAC MAC Schedule

...

Iter 0
Iter 1
Iter 2

Iter 15

ADC
Sampling

Cycle

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

BL0 1 2 125 126 127...

Xbar Cycle: 100ns
(# of BL=128)

 0 1 2 ... 125 126 127 128 129 130 ... 253 254 255 256 257 258 ... 381 382 383 1920 1922 1923 ... 2045 2046 2047

MAC Rescheduling based on the Dynamic Quantization

22

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

23

Experimental Setup

Throughput evaluation

Benchmarks

- Caffe model on CIFAR-10[1]

- LeNet on MNIST[2]

Power evaluation

[1] Y. Jia, et al. Caffe: Convolutional architecture for fast feature embedding. ACM, 675–678, 2014.
[2] Y. Lecun, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 2278–2324, 1998.
[3] N. Muralimanohar, et al. Optimizing nuca organizations and wiring alternatives for large caches with cacti 6.0, MICRO, 2007.
[4] L. Kull , et al. A 3.1mw 8b 1.2gs/s single-channel asynchronous sar adc with alternate comparators for enhanced speed in 32nm digital soi cmos. ISSCC, 468-469, 2013.

- Customized cycle-accurate SystemC
simulator

- Memory: CACTI6.5[3]

- ADC: Kull et al., 2013[4]

- Peripheral circuits: shift-add, sampling MUX, etc, TSMC 65nm

24

Result of Segmented Compression Encoding (SCE)

Weight Encoding Weight + Activation Encoding

CIFAR10 26.9% 44.1%

MNIST 27.4% 38.7%

Decreasing of Crossbar Power Consumption after Encoding

25

With 5-bit reduction in resolution

power of ADC → reduced by 58% area of ADC → reduced by 86%

Overall energy efficiency: 1.7 times larger

Overall area efficiency: 1.3 times larger

Accuracy loss: < 0.15%

Result of A/D Interface Optimization

Performance
Conventional Implementation with 10-bit ADC Modified to 5-bit ADC with Encoding

CIFAR-10 MNIST CIFAR-10 MNIST

Accuracy (%) 75.55 99.09 75.40 99.05

Energy Efficiency
(𝐹𝑟𝑎𝑚𝑒𝑠/𝐽)

8929 33445 15649 56497

Area Efficiency
(𝐹𝑟𝑎𝑚𝑒𝑠/𝑠/𝑚𝑚2)

509 308 677 410

The overall improvements after the dynamic quantization

- Accuracy loss: < 0.32%

- Throughput: 2 times larger - Energy efficiency: 3.7 times larger

- Area efficiency: 2.7 times larger

Compared with the 12-bit and 10-bit conventional quantization in CIFAR-10

26

Result of MAC Rescheduling based on Dynamic Quantization

33.7% 20.6%

27

 Introduction

Outline

 Hardware architecture and related works

 Segmented compression encoding

 Optimizing the bit-resolution of the A/D interface

 MAC rescheduling based on the dynamic quantization

 Experimental result

 Conclusion

Conclusion

Compared with the state-of-the-art RRAM-based accelerator

- 2x in throughput

- 3.7x in energy efficiency

- 2.7x in area efficiency

An encoding scheme is proposed for the weights and activations to
reduce ~40% energy consumed on the RRAM crossbars and achieve 1-bit
reduction in the ADC resolution.

Based on the distribution analysis of bitline outputs, the bit-resolution of
ADC is further reduced by 5 bits, and thus enables 58% & 86% reduction
in ADC power and area.

A dedicated dynamic quantization scheme is proposed for the MAC
operation and 50% of the A/D conversions are safely skipped.

28

Thank you.

