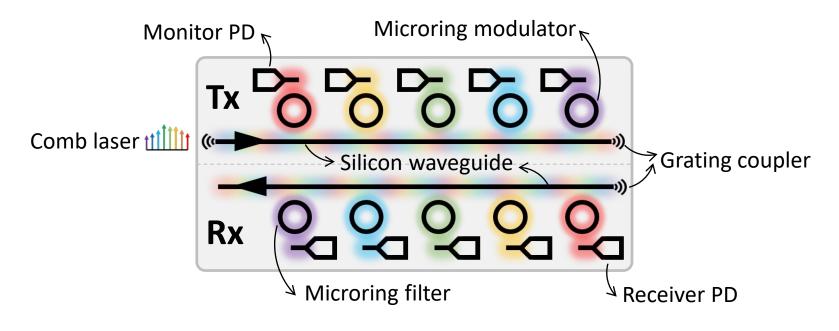


Pairing of Microring-based Silicon Photonic Transceivers for Tuning Power Optimization

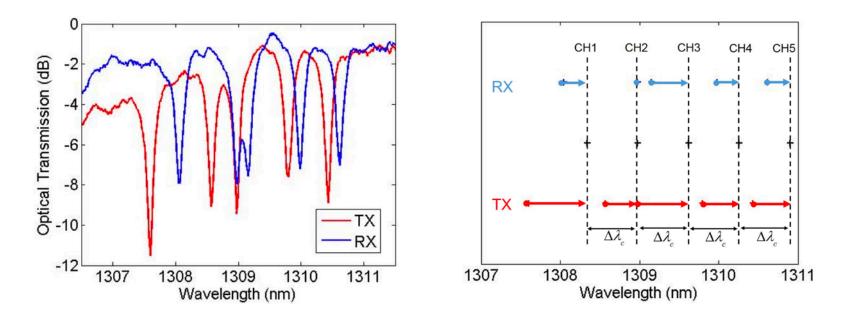
Rui Wu¹, M. Ashkan Seyedi², **Yuyang Wang**¹, Jared Hulme², Marco Fiorentino², Raymond G. Beausoleil², and Kwang-Ting Cheng³

¹Department of Electrical & Computer Engineering, **University of California, Santa Barbara**, CA, USA ²Hewlett Packard Labs, **Hewlett Packard Enterprise**, Palo Alto, CA, USA ³School of Engineering, **Hong Kong University of Science and Technology**, Hong Kong

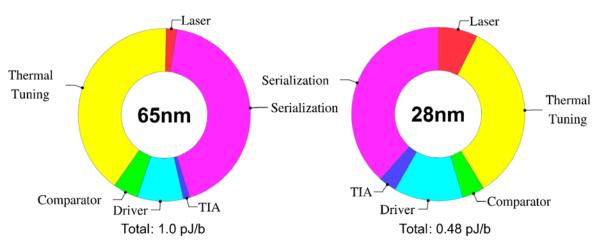

IEEE ASP-DAC 2018

Outline

- Background and Motivation
- Device Measurement and Variation Modeling
 - Measurement of fabricated transceivers
 - Variation model for resonance wavelengths
- Problem Formulation
 - Separable Transceivers
 - Inseparable Transceivers
- Algorithms and Evaluations
- Conclusion


Background: Microring-based WDM

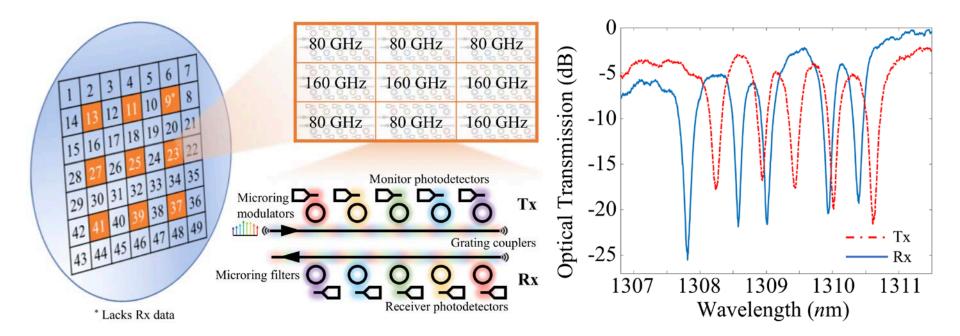
- **Optical interconnects** to solve communication bottleneck in HPC
- **Silicon photonics** as a scalable solution by taking advantage of CMOS-compatible integration
- **Microring-based TRx** considered promising due to its compact footprint and (de)multiplexer-free WDM implementation


Background: Microring Variations and Tuning

- Microring resonators are highly sensitive to process variations
- **Geometry inaccuracies** could lead to wavelength variations as large as 10 nm at wafer scale
- Resonance wavelengths of microrings need to be tuned to align with corresponding carrier wavelengths

Motivation

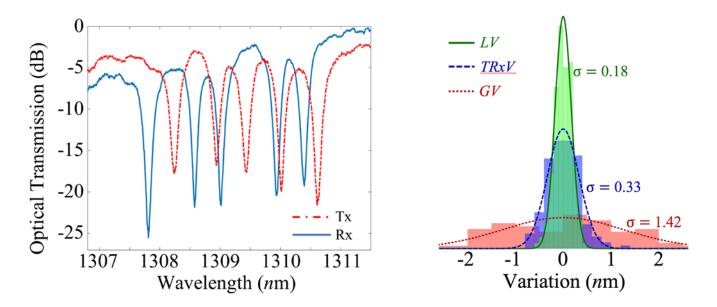
- Wavelengths tuning power takes a non-trivial portion of the total power budget
- **Existing solutions** to tuning power mitigation target on individual transceivers
- In the presence of multiple devices, different Tx Rx pairing results in different tuning power
- **Optimal pairing** exists which minimize the average tuning power



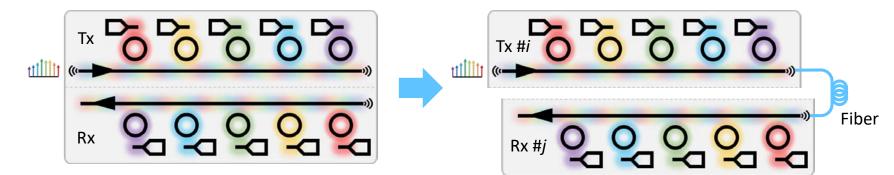
Polster et al, IEEE Trans. on VLSI Systems, 2016

Device Measurement

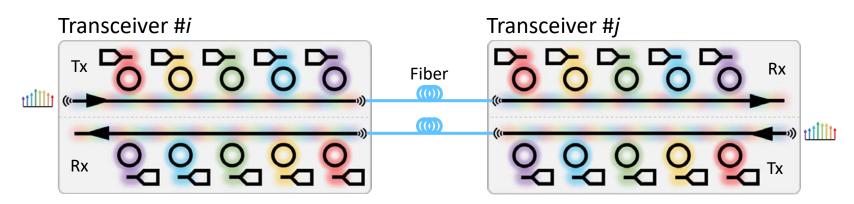
Nine representative locations measured


- 40 TRx with 80 GHz spacing
- 31 TRx with 160 GHz spacing

Variation Modeling

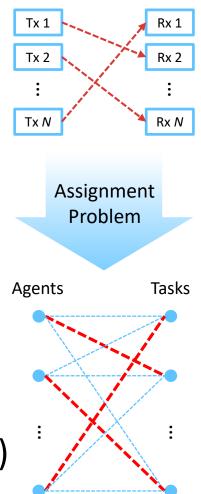

- Variation components of resonance wavelengths:
 - Global variation (GV) across different TRx
 - Local variation (LV) across different microrings within a TRx
 - Tx Rx wavelength offset (*TRxV*) within a TRx

 $\lambda_{TX}(i,j) = \lambda_0 + GV_i + (j-1)\Delta\lambda_c + LV_j$ $\lambda_{RX}(i,j) = \lambda_0 + GV_i + (j-1)\Delta\lambda_c + LV_j + TRxV_i$



Problem Formulation: Two Cases

• Case 1: separable transceivers


• Case 2: inseparable transceivers

Separable Transceivers: Assignment Problem

- Optimal assignment of Tx and Rx
 - Cost matrix construction (O(N²))

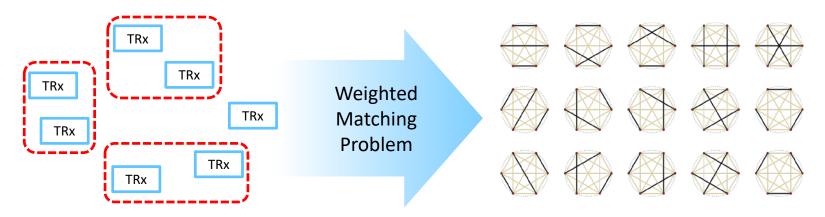
	Tx #1	Tx #2	 Tx #N
Rx #1	C ₁₁	C ₁₂	 C _{1N}
Rx #2	C ₂₁	C ₂₂	 C _{2N}
		•••	
Rx #N	C _{N1}	C _{N2}	 C _{NN}

• Solved by Hungarian Algorithm (O(N³))

Separable Transceivers: Evaluation

Evaluation on measurement data

Channel Spacing	Avg. Tuning	- Power Saving (%)	
	Local Assignment Optimal A		
80 GHz	25.7	24.1	6.2
160 GHz	24.7	21.3	13.8


Evaluation on synthetic data

Channel Spacing	# of Tx and Rx	Power Saving (%)	Exe. Time (s)
80 GHz	40	11.2	0.02
80 GHz	400	23.2	2.6
80 GHz	1000	25.8	26.8
80 GHz	1500	26.6	89.5
160 GHz	31	14.4	0.01
160 GHz	301	27.1	1.4
160 GHz	1001	29.8	28.3
160 GHz	1501	30.6	94.0

*Assuming 0.15 nm/mW tuning efficiency

Inseparable Transceivers: Matching Problem

• Minimum-weight maximal matching of TRx

Even # of TRx: perfect matching. Odd # of TRx: maximal matching.

- O(N!!) solution space where N!! = N(N-2)(N-4)...
- Blossom V Algorithm^{*}
 - Solves min-weight perfect matching in $O(V^2E) = O(N^4)$
 - Does not apply to min-weight maximal matching

^{*}V. Kolmogorov, *Mathematical Programming Computation, 2009*

Simulated annealing-based algorithm

Cost matrix construction (O(N²)); Greedy pairing as initial state (O(N³)); while temp > finalTemp do

Randomly shuffle two pairs of TRx;

if $\Delta E < 0$ then

Accept new matching;

else

Accept new matching with prob. of $\exp(-\Delta E/kT)$;

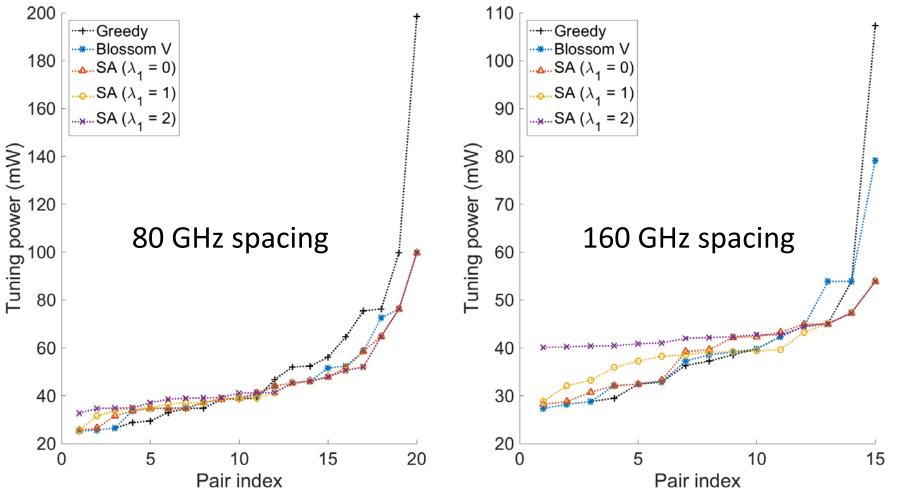
end

temp = temp × coolingRate;

end

Return the matching with minimum cost;

 $E = \mu \left(\vec{A} \right) + \lambda \cdot \sigma \left(\vec{A} \right)$


 \vec{A} : tuning cost vector of current matching

 $\lambda = 0$: only optimize for avg. tuning cost

 $\lambda > 0$: optimize for avg. tuning cost **and** tuning cost uniformity

Inseparable Transceivers: Evaluation

Evaluation on measurement data^{*}

*Assuming 0.15 nm/mW tuning efficiency

Inseparable Transceivers: Evaluation

• Evaluation on synthetic data^{*}

Channel Spacing	# of TRx	Power Saving (%)	Std. Reduction (%)	Exe. Time (s)
80 GHz	40	66.1	81.7	0.44
80 GHz	400	72.7	90.3	4.24
80 GHz	1000	75.4	77.1	18.25
80 GHz	1500	77.1	83.8	42.89
160 GHz	31	60.8	78.8	0.37
160 GHz	301	66.3	87.1	2.99
160 GHz	1001	72.9	84.0	18.27
160 GHz	1501	73.5	80.7	42.97

Conclusion

- Formulated the optimal pairing of TRx as assignment and matching problems depending on application scenarios.
- Applied optimization algorithms on either case for tuning power minimization.
- Optimal pairing techniques evaluated on both measurement and synthetic data.
- Greater power saving can be achieved when more devices are available for pairing.
- Our techniques can be applied on top of any previously proposed techniques which target on individual transceivers.
- The execution time is acceptable as a one-time cost in the production stage.

• Thank you!

Questions?