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Motivations

e Aging effects are becoming increasingly important
» Bias Temperature Instability (BTI): NBTI and PBTI
> Hot Carrier Injection (HCI)
» Increase gate delay by more than 10% in 28nm process [1]

¢+ Degrade end-of-life (EOL) circuit performance significantly
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Motivations

¢ Aging effects are observed to show strong layout dependency
> Ignoring layout dependency leads to 11.5% inaccuracy [1]
> Important factors considered in the industry flow for sub-20nm process

¢+ Layout dependent aging (LDA) complicates EOL timing optimization
> Timing degradation
> Change of critical paths (CPs) in EOL compared to the early life design
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Motivations

‘ ¢ Aging effects are observed to show strong layout dependency
> Ignoring layout dependency leads to 11.5% inaccuracy [1]
> Important factors considered in the industry flow for sub-20nm process

¢+ Layout dependent aging (LDA) complicates EOL timing optimization
> Timing degradation
> Change of critical paths (CPs) in EOL compared to the early life design

¢+ Can we leverage the layout dependency to optimize the EOL timing?

4 [1] P. Ren et al., IEDM 2015



Important LDA Factors

‘ ¢ Important LDA factors [1]:
> LOD — Length between the gate and the edge of diffusion
> OSE - Active to active spacing
> SPM — Poly extension from active area

¢ SPM is usually fixed due to design rule check
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Important LDA Factors

‘ ¢ Larger LOD and OSE lead to smaller threshold voltage degradation
»  AVth decreases 25% as LOD increases from 100nm to 500nm
> AVth decreases 200% as OSE increases from 100nm to 1300nm

¢+ LOD and OSE dependency enable optimization in placement stage
> Both LOD and OSE are impacted by cell relative positions
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Aging Mitigation Framework

"+ Overall flow

» Improve EOL timing while maintaining early-life timing closure during the
placement stage

[ Device Aging Model ]—)[ Cell-Level LDA Char. ]
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Cell-Level LDA Characterization

‘ ¢+ Obtain cell-level aging impact through spice simulations
> Leverage industrial strength LDA model [1] to build the EOL timing library

¢ Impact of cell layout configurations
Compare single-row and dual-row height cells with the same driving strength
> Single-row height cells degrade less due to larger LOD

INV_X2

A

INV_X2 INV_X2 Dual
LOD; 25nm 25nm
LO. Dr 79nm 23nm

INV_X2 Dual

Single
Dual
A Delay

INV._X2  NAND2 X1

9.24 ps 12.63 ps
10.94 ps 13.72 ps
18.35% 8.56%

[1] P. Ren et al., IEDM 2015



Placement Refinement for Aging Mitigation

‘ ¢ Post detail placement stage for LDA friendly refinement

¢ Target at optimizing EOL timing by modifying

> LOD: determined by cell structure (height) and type

> OSE: determined by cell to cell spacing

¢ Overall flow
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Placement Refinement for Aging Mitigation

‘ ¢ An illustrative example for the LDA mitigation flow

[ Initial Placement ]

Cell
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Placement Refinement for Aging Mitigation

‘ ¢ An illustrative example for the LDA mitigation flow

Initial Placement

Vv

|dentify EOL Crit. Paths

— Timing path Cellon EOL CP
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Placement Refinement for Aging Mitigation

‘ ¢ An illustrative example for the LDA mitigation flow

Initial Placement

Y
|dentify EOL Crit. Paths
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Greedy Cell Replacement

— Timing path Cellon EOL CP

Cell with larger LOD
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Placement Refinement for Aging Mitigation

¢ An illustrative example for the LDA mitigation flow

Initial Placement i
I
Y 1
Identify EOL Crit. Paths | =
) % o
L Greedy Cell Replacement | :
) \ 4 . i
Concurrent Cell Spreading ;
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i — Timing path Cell on EOL CP

Cell with larger LOD - Cell with larger OSE
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Placement Refinement for Aging Mitigation

¢ An illustrative example for the LDA mitigation flow

Initial Placement

Y
Identify EOL Crit. Paths
A4

Greedy Cell Replacement

— Timing path Cellon EOL CP

A4

Concurrent Cell Spreading

Vv

Aging-Opt. Placement

Cell with larger LOD - Cell with larger OSE
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Greedy Cell Replacement

\ ¢ Objective is to optimize LOD

¢+ Greedy approach
> Replace cell if the single-row height cell can fit in initial horizontal spacing
> Congestion can be considered for pin accessibility
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Greedy Cell Spreading

‘ ¢ Objective is to optimize OSE

¢+ Naive method: greedy cell spreading
> Sort cells on critical paths based on the OSE sensitivity (Adelay/AOSE)
> Optimize cell with steepest gradient first
> Simple implementation and fast run time

¢+ However, greedy cell spreading affects other cells’ OSE

B Aging Sensitive Cell — CP <— Adjusted OSE
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Initial placement Greedy cell spreading
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Concurrent Cell Spreading

‘ ¢+ Simultaneously optimize white space on critical paths
Provide holistic OSE improvements for different cells

>

¢ Can be formulated as a linear programming (LP) problem

B Aging Sensitive Cell — CP
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LP-based Concurrent Cell Spreading

¢+ Objective: balance between aging mitigation and cell displacements
minz —f (i1, X0, x-1) + Z|xi — x|
l l
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LP-based Concurrent Cell Spreading

¢+ Objective: balance between aging mitigation and cell displacements

minz —k;(x;01 —x;_1) + lei — Xf|
i i

> Aging mitigation approximated as a piecewise linear function of OSE
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LP-based Concurrent Cell Spreading

¢+ Objective: balance between aging mitigation and cell displacements
min )" —ki(Xiy1 = %) + ) [x; = 7|
{ l

> Nonlinear term is not preferred in the objective function

» Define d! /d! is the right/left edge (upper/lower bound) of the displacement

d” = max(x;,x;)

= min(x;, x;" )

0
i Xi Xi+10 Xi+1 Xi+2
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LP-based Concurrent Cell Spreading

¢+ Objective: balance between aging mitigation and cell displacements
minz —ki(xXj41 —x3-1) + Z(df —d})
l l

> Nonlinear term is not preferred in the objective function

» Define d! /d! is the right/left edge (upper/lower bound) of the displacement

d” = max(x;,x;)

= min(x;, x;" )

0
i Xi Xi+10 Xi+1 Xi+2
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LP-based Concurrent Cell Spreading

¢ Constraints:
> Guarantee no overlapping between cells

Xig1 = X; = W;
> Guarantee the relationship between d7, d!, x? and x;

di —x{ =0, di —x; =0
dl—x? <0, di—x; <0

l — —



Dual Min-Cost Flow Transformation

‘ ¢ The LP problem can be solved by dual min-cost flow transformation
> Enable to use fast graph algorithm for acceleration

¢ Example

X, X, X3 X,

| r

¢+ Objective:
—ky(x3 —x1) — k3(xq — x3)
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Dual Min-Cost Flow Transformation

‘ ¢ The LP problem can be solved by dual min-cost flow transformation
> Enable to use fast graph algorithm for acceleration

¢ Example

Xq X, X3 X4
I r
¢+ Constraints:

Xy —X1 = Wy

X3 —Xp = Wy

X4 —X3 = W3
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Dual Min-Cost Flow Transformation

‘ ¢ The LP problem can be solved by dual min-cost flow transformation
> Enable to use fast graph algorithm for acceleration

¢ Example

X, X, X3 X,
| r

¢+ Constraints:
X1 > [

—Xg4 2Wy —7T
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Results

‘ ¢ IWLS 2005 benchmark
¢+ Perform EOL timing analysis using Synopsys Primetime

¢+ Compare three different scenarios
> Without optimization
> Greedy optimization
> Concurrent optimization
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Results

¢+ Comparing EOL Total Negative Slack (TNS) and Worst Negative
Slack (WNS) in greedy optimization
> On average, TNS reduces by 29.28% after greedy opt.
> On average, WNS reduces by 16.15% after greedy opit.

EOL Timing w/o Opt. EOL Timing w/ Greedy Opt.

ckt TNS WNS TNS ATNS WNS AWNS cpu
(ps) (ps) (ps) (%) (ps) (%) (s)
ss_pem 182.79 37.15 153.14 18.48%  33.69 9.31% 0.01
simple spi | 202.59 29.27 71.69 64.61% 15.54  46.90%  0.03
sasc 211.40 30.35 149.81 29.13%  27.36 9.85% 0.02
tv80s 2436.16 77.55 1860.37  23.64%  65.67 15.32%  0.18
ac97 _ctrl 401.18 28.12 267.06 33.43% 2231 20.66%  0.43
usb 352.80 61.76 331.46 6.05% 61.66 0.16% 0.49
aes_core 220.81 47.69 155.29 29.67% 42.53 10.82%  0.58

| Average Reduction | — 29.28% — 16.15%  — ‘
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Results

‘ ¢+ Comparing EOL Total Negative Slack (TNS) and Worst Negative
Slack (WNS) in concurrent optimization
> On average, TNS reduces by 42.35% after concurrent opt.
> On average, WNS reduces by 25.19% after concurrent opt.

EOL Timing w/o Opt. EOL Timing w/ Concurrent Opt.

ckt TNS WNS TNS ATNS WNS AWNS cpu

(ps) (ps) (ps) (%) (ps) (%) (s)

ss_pcm 182.79 37.15 144.09 23.27% 32.29 13.08%  0.17

simple_spi | 202.59 29.27 58.31 71.22% 14.06 51.96%  0.34

Sasc 211.40 30.35 128.91 39.02% 25.61 15.62%  0.34

tv80s 2436.16 77.55 1598.48  34.39% 59.61 23.13%  2.99

ac97_ctrl 401.18 28.12 172.22 57.07% 16.59 41.00%  6.60

ush 352.80 61.76 235.34 33.29% 51.41 16.76%  7.51

aes_core 220.81 47.69 136.41 38.22% 40.65 14.76%  8.87
I Average Reduction I — 42.35% — 25.19% — |
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Results

¢+ Comparing early-life timing before and after greedy/concurrent opt.
» D, CP delay for original placement
» Dy CP delay after greedy opt.
» D, CP delay after concurrent opt.
> On average, less than 0.2% of timing change

Early-life Timing % change from original
ckt D, D, D AD g AD _c
(ps) (ps) (ps) (%) (%)
ss_pem 336.42 | 336.76 337.18 | 0.10% 0.23%
simple _spi | 342.03 | 342.02 34237 | 0.00% 0.10%
sasc 290.96 | 291.78 292.82 | 0.28% 0.64%
tv80s 749.93 | 753.79 753.48 | 0.51% 0.47%
ac97 _ctrl | 440.41 | 441.33 439.06 | 0.21% -0.31%
usb 626.84 | 627.53 637.91 | 0.11% 1.76%
aes_core 575.48 | 561.67 563.10 | -2.40% -2.20%
‘ Average Change | -0.17% 0.10% ‘
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Results

¢ Detained statistics on ckt tv80s
> Original placement (Early life and EOL)
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Results

¢+ Detained statistics on ckt tv80s
> Greedy optimization
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Results

¢+ Detained statistics on ckt tv80s
> Concurrent optimization
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Results

¢ Detained statistics on ckt tv80s
»  Distribution shifts right means more timing slack
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Conclusions

"+ LDA degrades EOL timing performance

¢+ We propose Cell replacement and cell spreading techniques for
placement refinement

¢+ Proposed framework reduced EOL total negative slack by 42%
and worst negative slack by 25% on average
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Dual min-cost flow transformation

¢ Original form to Prime form and then transform to dual form

Prime

N N
- o - I
II_}:}EIIZ:1’...£.;.',2 n}ﬁn E C; Y,
i=1 T i=0
s.t. x; — Iy E bij: (11 j) € E! s.t. Yi — Yy :_:"‘ b;j‘ (3.,:;') c EI,
i <xy <u, i=1,2,....N.

‘ Y € Z,
T €2 where

Dual
max » _ b fij.
fia 4

, e i=1,2,.. N
T _E?I:1 Ci 1=
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b =

ij
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Dual min-cost flow transformation

‘ ¢+ Change original problem to min-cost flow problem

Original problem Min-cost flow problem

min X, + 2 X, +3X; +4X,,
s.t. X{—X,>9,
X4— X326,
0 <x <10,1=1,234

min 10f, +10f, +10f,; +10f,, -5, -6 1,3,

s.t. fio + Too+ Tgg + T40- for - foo- fog- fos =10
for - fio- f1p =-1,
fip + fop - T =-2,
fgg + fo3 - T3 =-3,

fog - f4o - T43 = -4,
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Dual min-cost flow transformation

¢+ Graph representation

Node supply

Capacity

38
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Aging Simulation

¢+ Piecewise linear approximation
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LDA Mitigation Framework

Initial Design

¥

Aging Mitigation
Framework
Add Aging information

Modeling
Work

| Update Placement | Aging Cell
Library

| RC Extraction |

S-|:A Timing

Update Aging Timing Engine Constraints

I it

Aging Mitigation

Identify EOL CP
from timing report Placement
Framework

Dual-height cell
replacement

Cell Spreading

Greedy approach &
Min-cost flow approach

Aging-optimized
Placement
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Results

Cell delay comparison for different OSE

cell Early-life delay (ps) | A Delay (92nm) | A Delay (T40nm)
INV X1 0.01 37.96% 11.30%
NAND2 X1 8.64 46.16% 11.97%
NOR2_X1 13.42 24.63% 12.07%
Cell delay comparison for different cell height.
Early Life EOL
cell Single | Dual | ADelay | Single Dual ADelay
(ps) | (ps) (%) (ps) | (ps) (%)
INV_X2 6.18 7.31 18.27% 0.24 10.94 18.35%
NAND2 X1 8.64 9.50 9.88% 12.63 13.72 8.56%
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Results

Comparisons on solution qualities of different aging mitigation approaches

Early-life Timing EOL Timing w/o Opt. EOL Timing w/ Greedy Opt. EOL Timing w/ Concurrent Opt.

ckt [26] D, g D TNES WNS TNE ATNS WNS AWNS cpu TNS ATNES WNS AWNSE o
(ps) (ps) (ps) (ps) (ps) (ps) (%) (ps) (%) (s) (ps) (%) (ps) (%) (s)

§5_pCcm 33642 33676  337.18 182.79 37.15 153.14 18.48% 33.69 9.31% 0.01 144.09 23.27% 32.29 13.08% 0.17
simplespi | 34203 34202 34237 202.59 29.77 71.69 64.61% 15.54 46.90% 0.03 58.31 T1.22% 14.06 51.96% 0.34
SasC 20096 29178  292.82 21140 30.35 149.81 29.13% 27.36 9.85% 0.02 128.91 39.02% 25.61 15.62% 0.34
tvB0s T49.93 75379 75348 | 2436.16 77.55 1860.37 23.64% 65.67 15.32% 0.18 1598.48 34.39% 59.61 23.13% 2.99
acy7_cirl 44041 44133 43906 401.18 28.12 267.06 33.43% 2231 20.6659% 0.43 172.22 57.07% 16.59 41.00% 6.60
usb 626,84 62753 63791 352.80 61.76 331.46 6.05% 61.66 0.16% 0.49 23534 33.29% 5141 16.76% 7.51
aes_core 57548  561.67  563.10 220,81 47.69 155.29 20.67% 42.53 10.82% 0.58 136.41 38.22% 40.65 14.76% 8.87

| Average Reduction | — — — 29.28% — 16.15% — ] — 42.35% — 25.19% —
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