

Layout Dependent Aging Mitigation for Critical Path Timing

Che-Lun Hsu¹, Shaofeng Guo², Yibo Lin¹, Xiaoqing Xu¹, <u>Meng Li¹</u>, Runsheng Wang², Ru Huang², and David Z. Pan¹

> ¹ECE Department, University of Texas at Austin ²Institute of Microelectronics, Peking University

Motivations

- Aging effects are becoming increasingly important
 - Bias Temperature Instability (BTI): NBTI and PBTI
 - Hot Carrier Injection (HCI)
 - Increase gate delay by more than 10% in 28nm process [1]
- Degrade end-of-life (EOL) circuit performance significantly

Motivations

- Aging effects are observed to show strong layout dependency
 - Ignoring layout dependency leads to 11.5% inaccuracy [1]
 - Important factors considered in the industry flow for sub-20nm process
- Layout dependent aging (LDA) complicates EOL timing optimization
 - > Timing degradation
 - > Change of critical paths (CPs) in EOL compared to the early life design

Motivations

- Aging effects are observed to show strong layout dependency
 - Ignoring layout dependency leads to 11.5% inaccuracy [1]
 - > Important factors considered in the industry flow for sub-20nm process
- Layout dependent aging (LDA) complicates EOL timing optimization
 - > Timing degradation
 - > Change of critical paths (CPs) in EOL compared to the early life design
- Can we leverage the layout dependency to optimize the EOL timing?

Important LDA Factors

- Important LDA factors [1]:
 - LOD Length between the gate and the edge of diffusion
 - OSE Active to active spacing
 - > SPM Poly extension from active area
- SPM is usually fixed due to design rule check

Important LDA Factors

- Larger LOD and OSE lead to smaller threshold voltage degradation
 - > ΔVth decreases 25% as LOD increases from 100nm to 500nm
 - ΔVth decreases 200% as OSE increases from 100nm to 1300nm
- LOD and OSE dependency enable optimization in placement stage
 - Both LOD and OSE are impacted by cell relative positions

Aging Mitigation Framework

Overall flow

> Improve EOL timing while maintaining early-life timing closure during the placement stage

Cell-Level LDA Characterization

- Obtain cell-level aging impact through spice simulations
 - Leverage industrial strength LDA model [1] to build the EOL timing library
- Impact of cell layout configurations
 - > Compare single-row and dual-row height cells with the same driving strength
 - > Single-row height cells degrade less due to larger LOD

	INV_X2	NAND2_X1
Single	9.24 ps	12.63 ps
Dual	10.94 ps	13.72 ps
∆ Delay	18.35%	8.56%

- Post detail placement stage for LDA friendly refinement
- Target at optimizing EOL timing by modifying
 - > LOD: determined by cell structure (height) and type
 - > OSE: determined by cell to cell spacing
- Overall flow

Cell on EOL CP

Cell with larger OSE

Greedy Cell Replacement

- Objective is to optimize LOD
- Greedy approach
 - > Replace cell if the single-row height cell can fit in initial horizontal spacing
 - > Congestion can be considered for pin accessibility

Greedy Cell Spreading

- Objective is to optimize OSE
- Naïve method: greedy cell spreading
 - Sort cells on critical paths based on the OSE sensitivity ($\Delta delay/\Delta OSE$)
 - > Optimize cell with steepest gradient first
 - > Simple implementation and fast run time
- However, greedy cell spreading affects other cells' OSE

Concurrent Cell Spreading

- Simultaneously optimize white space on critical paths
 - > Provide holistic OSE improvements for different cells
- Can be formulated as a linear programming (LP) problem

Objective: balance between aging mitigation and cell displacements

$$\min \sum_{i} -f(x_{i+1}, x_i, x_{i-1}) + \sum_{i} |x_i - x_i^o|$$

- Objective: balance between aging mitigation and cell displacements $\min \sum_{i} -k_i (x_{i+1} - x_{i-1}) + \sum_{i} |x_i - x_i^o|$
 - > Aging mitigation approximated as a piecewise linear function of OSE

- Objective: balance between aging mitigation and cell displacements $\min \sum_{i} -k_i(x_{i+1} - x_{i-1}) + \sum_{i} |x_i - x_i^o|$
 - > Nonlinear term is not preferred in the objective function
 - > Define d_i^r/d_i^l is the right/left edge (upper/lower bound) of the displacement

$$d_i^r = \max(x_i, x_i^o)$$
$$d_i^l = \min(x_i, x_i^o)$$

- Objective: balance between aging mitigation and cell displacements $\min \sum_{i} -k_i(x_{i+1} - x_{i-1}) + \sum_{i} (d_i^r - d_i^l)$
 - > Nonlinear term is not preferred in the objective function
 - > Define d_i^r/d_i^l is the right/left edge (upper/lower bound) of the displacement

$$d_i^r = \max(x_i, x_i^o)$$
$$d_i^l = \min(x_i, x_i^o)$$

- Constraints:
 - > Guarantee no overlapping between cells

$$x_{i+1} - x_i \ge w_i$$

• Guarantee the relationship between d_i^r , d_i^l , x_i^o and x_i

$$\begin{aligned} &d_i^r - x_i^o \ge 0, \qquad d_i^r - x_i \ge 0 \\ &d_i^l - x_i^o \le 0, \qquad d_i^l - x_i \le 0 \end{aligned}$$

Dual Min-Cost Flow Transformation

- The LP problem can be solved by dual min-cost flow transformation
 - > Enable to use fast graph algorithm for acceleration
- Example | 1 2 3 4 $x_1 x_2 x_3 x_4$ • Objective: $-k_2(x_3 - x_1) - k_3(x_4 - x_2)$

Dual Min-Cost Flow Transformation

- The LP problem can be solved by dual min-cost flow transformation
 - > Enable to use fast graph algorithm for acceleration
- Constraints:

$$x_2 - x_1 \ge w_1$$

$$x_3 - x_2 \ge w_2$$

$$x_4 - x_3 \ge w_3$$

Dual Min-Cost Flow Transformation

- The LP problem can be solved by dual min-cost flow transformation
 - > Enable to use fast graph algorithm for acceleration
- Constraints: $x_1 \ge l$ $-x_4 \ge w_4 - r$

- IWLS 2005 benchmark
- Perform EOL timing analysis using Synopsys Primetime
- Compare three different scenarios
 - > Without optimization
 - > Greedy optimization
 - > Concurrent optimization

- Comparing EOL Total Negative Slack (TNS) and Worst Negative Slack (WNS) in greedy optimization
 - > On average, TNS reduces by 29.28% after greedy opt.
 - > On average, WNS reduces by 16.15% after greedy opt.

	EOL Timi	ng w/o Opt.	EOL Timing w/ Greedy Opt.							
ckt	TNS	WNS	TNS	ΔTNS	WNS	ΔWNS	$_{\rm cpu}$			
	(ps)	(ps)	(ps)	(%)	(ps)	(%)	(s)			
ss_pcm	182.79	37.15	153.14	18.48%	33.69	9.31%	0.01			
simple_spi	202.59	29.27	71.69	64.61%	15.54	46.90%	0.03			
sasc	211.40	30.35	149.81	29.13%	27.36	9.85%	0.02			
tv80s	2436.16	77.55	1860.37	23.64%	65.67	15.32%	0.18			
ac97_ctrl	401.18	28.12	267.06	33.43%	22.31	20.66%	0.43			
usb	352.80	61.76	331.46	6.05%	61.66	0.16%	0.49			
aes_core	220.81	47.69	155.29	29.67%	42.53	10.82%	0.58			
Ave		$\mathbf{29.28\%}$		16.15%						

- Comparing EOL Total Negative Slack (TNS) and Worst Negative Slack (WNS) in concurrent optimization
 - > On average, TNS reduces by 42.35% after concurrent opt.
 - > On average, WNS reduces by 25.19% after concurrent opt.

	EOL Timi	ng w/o Opt.	EOL Timing w/ Concurrent Opt.						
ckt	TNS	WNS	TNS	ΔTNS	WNS	ΔWNS	$_{\rm cpu}$		
	(ps)	(ps)	(ps)	(%)	(ps)	(%)	(s)		
ss_pcm	182.79	37.15	144.09	23.27%	32.29	13.08%	0.17		
simple_spi	202.59	29.27	58.31	71.22%	14.06	51.96%	0.34		
sasc	211.40	30.35	128.91	39.02%	25.61	15.62%	0.34		
tv80s	2436.16	77.55	1598.48	34.39%	59.61	23.13%	2.99		
ac97_ctrl	401.18	28.12	172.22	57.07%	16.59	41.00%	6.60		
\mathbf{usb}	352.80	61.76	235.34	33.29%	51.41	16.76%	7.51		
aes_core	220.81	47.69	136.41	38.22%	40.65	14.76%	8.87		
Average Reduction				42.35%		$\mathbf{25.19\%}$			

• Comparing early-life timing before and after greedy/concurrent opt.

- > D_o : CP delay for original placement
- > D_g : CP delay after greedy opt.
- > D_c : CP delay after concurrent opt.
- > On average, less than 0.2% of timing change

	Ear	ly-life Tin	ning	% change from original			
ckt	D_o	D_g	D_{c}	ΔD_g	ΔD_c		
	(ps)	(ps)	(ps)	(%)	(%)		
ss_pcm	336.42	336.76	337.18	0.10%	0.23%		
simple_spi	342.03	342.02	342.37	0.00%	0.10%		
sasc	290.96	291.78	292.82	0.28%	0.64%		
tv80s	749.93	753.79	753.48	0.51%	0.47%		
ac97_ctrl	440.41	441.33	439.06	0.21%	-0.31%		
usb	626.84	627.53	637.91	0.11%	1.76%		
aes_core	575.48	561.67	563.10	-2.40%	-2.20%		
A	verage C	-0.17%	0.10%				

- Detained statistics on *ckt tv80s*
 - Original placement (Early life and EOL)

- Detained statistics on *ckt tv80s*
 - Greedy optimization

• Detained statistics on *ckt tv80s*

> Concurrent optimization

• Detained statistics on *ckt tv80s*

> Distribution shifts right means more timing slack

Conclusions

- LDA degrades EOL timing performance
- We propose Cell replacement and cell spreading techniques for placement refinement
- Proposed framework reduced EOL total negative slack by 42% and worst negative slack by 25% on average

THANK YOU!

Dual min-cost flow transformation

Original form to Prime form and then transform to dual form

$$\min_{x_i} \sum_{i=1}^{N} c_i x_i$$

s.t. $x_i - x_j \ge b_{ij}, (i, j) \in E,$
 $l_i \le x_i \le u_i, i = 1, 2, ..., N,$
 $x_i \in Z$

where

$$x_{i} = y_{i} - y_{0}, \quad i = 1, 2, ..., N$$

$$c'_{i} = \begin{cases} c_{i} & i = 1, 2, ..., N \\ -\sum_{i=1}^{N} c_{i} & i = 0 \end{cases}$$

$$b'_{ij} = \begin{cases} b_{ij} & (i, j) \in E \\ l_{i} & i = 1, 2, ..., N, j = 0 \\ -u_{i} & i = 0, j = 1, 2, ..., N \end{cases}$$

Dual min-cost flow transformation

Change original problem to min-cost flow problem

Original problem

$$\begin{array}{ll} \min & x_1 + 2 \; x_2 + 3 x_3 + 4 \; x_4, \\ \text{s.t.} & x_1 - x_2 \ge 5 \; , \\ & x_4 - x_3 \ge 6 \; , \\ & 0 \; \le x_i \; \le 10 \; , \; i = 1, 2, 3, 4 \end{array}$$

Min-cost flow problem

$$\begin{array}{ll} \min \ 10\,f_{01} \,+\, 10\,f_{02} \,+\, 10\,f_{03} \,+\, 10\,f_{04} \,-\, 5\,f_{12} \,-\, 6\,f_{43} \,, \\ \text{s.t.} & f_{10} \,+\, f_{20} \,+\, f_{30} \,+\, f_{40} \,-\, f_{01} \,-\, f_{02} \,-\, f_{03} \,-\, f_{04} \,=\, 10 \\ & f_{01} \,-\, f_{10} \,-\, f_{12} \,=\, -1 \,, \\ & f_{12} \,+\, f_{02} \,-\, f_{20} \,=\, -2 \,, \\ & f_{43} \,+\, f_{03} \,-\, f_{30} \,=\, -3 \,, \\ & f_{04} \,-\, f_{40} \,-\, f_{43} \,=\, -4 \,, \end{array}$$

Dual min-cost flow transformation

Aging Simulation

Piecewise linear approximation

LDA Mitigation Framework

Cell delay comparison for different OSE

cell	Early-life delay (ps)	$\Delta Delay (92nm)$	$\Delta Delay$ (740nm)
INV_X1	9.01	37.96%	11.30%
NAND2_X1	8.64	46.16%	11.97%
NOR2_X1	13.42	24.63%	12.07%

Cell delay comparison for different cell height.

		Early Li	ife	EOL			
cell	Single	ngle Dual $\Delta D \epsilon$		Single	Dual	$\Delta Delay$	
	(ps)	(ps)	(%)	(ps)	(ps)	(%)	
INV_X2	6.18	7.31	18.27%	9.24	10.94	18.35%	
NAND2_X1	8.64	9.50	9.88%	12.63	13.72	8.56%	

Comparisons on solution qualities of different aging mitigation approaches

	Ea	rly-life Tim	ing	EOL Timi	ng w/o Opt.	pt. EOL Timing w/ Greedy Opt.				EOL Timing w/ Concurrent Opt.					
ckt [26]	D_o	D_{q}	D_c	TNS	WNS	TNS	ΔTNS	WNS	ΔWNS	cpu	TNS	ΔTNS	WNS	ΔWNS	cpu
	(<i>ps</i>)	(<i>ps</i>)	(ps)	(<i>ps</i>)	(ps)	(<i>ps</i>)	(%)	(ps)	(%)	(S)	(ps)	(%)	(ps)	(%)	(S)
ss_pcm	336.42	336.76	337.18	182.79	37.15	153.14	18.48%	33.69	9.31%	0.01	144.09	23.27%	32.29	13.08%	0.17
simple_spi	342.03	342.02	342.37	202.59	29.27	71.69	64.61%	15.54	46.90%	0.03	58.31	71.22%	14.06	51.96%	0.34
sasc	290.96	291.78	292.82	211.40	30.35	149.81	29.13%	27.36	9.85%	0.02	128.91	39.02%	25.61	15.62%	0.34
tv80s	749.93	753.79	753.48	2436.16	77.55	1860.37	23.64%	65.67	15.32%	0.18	1598.48	34.39%	59.61	23.13%	2.99
ac97_ctrl	440.41	441.33	439.06	401.18	28.12	267.06	33.43%	22.31	20.66%	0.43	172.22	57.07%	16.59	41.00%	6.60
usb	626.84	627.53	637.91	352.80	61.76	331.46	6.05%	61.66	0.16%	0.49	235.34	33.29%	51.41	16.76%	7.51
aes_core	575.48	561.67	563.10	220.81	47.69	155.29	29.67%	42.53	10.82%	0.58	136.41	38.22%	40.65	14.76%	8.87
	Average Re	eduction		_	_	_	29.28%	_	16.15%	_	_	42.35%	_	25.19%	_