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Motivations 

 Aging effects are becoming increasingly important 

› Bias Temperature Instability (BTI): NBTI and PBTI 

› Hot Carrier Injection (HCI) 

› Increase gate delay by more than 10% in 28nm process [1] 

 Degrade end-of-life (EOL) circuit performance significantly 
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 Aging effects are observed to show strong layout dependency 

› Ignoring layout dependency leads to 11.5% inaccuracy [1] 

› Important factors considered in the industry flow for sub-20nm process 

 Layout dependent aging (LDA) complicates EOL timing optimization 

› Timing degradation 

› Change of critical paths (CPs) in EOL compared to the early life design 
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Motivations 
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 Aging effects are observed to show strong layout dependency 

› Ignoring layout dependency leads to 11.5% inaccuracy [1] 

› Important factors considered in the industry flow for sub-20nm process 

 Layout dependent aging (LDA) complicates EOL timing optimization 

› Timing degradation 

› Change of critical paths (CPs) in EOL compared to the early life design 

 Can we leverage the layout dependency to optimize the EOL timing? 
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Important LDA Factors 

 Important LDA factors [1]: 

› LOD – Length between the gate and the edge of diffusion 

› OSE – Active to active spacing 

› SPM – Poly extension from active area 

 SPM is usually fixed due to design rule check 
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Important LDA Factors 

 Larger LOD and OSE lead to smaller threshold voltage degradation 

› ΔVth decreases 25% as LOD increases from 100nm to 500nm 

› ΔVth decreases 200% as OSE increases from 100nm to 1300nm 

 LOD and OSE dependency enable optimization in placement stage 

› Both LOD and OSE are impacted by cell relative positions 
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Aging Mitigation Framework 

 Overall flow 

› Improve EOL timing while maintaining early-life timing closure during the 

placement stage 

 

 

 

 

 

 

 

 

 

 

7 

Device Aging Model Cell-Level LDA Char. 

EOL Timing Analysis 

Placement Refinement 

Aging-Opt Placement 

Initial Placement 



Cell-Level LDA Characterization 

 Obtain cell-level aging impact through spice simulations 

› Leverage industrial strength LDA model [1] to build the EOL timing library 

 Impact of cell layout configurations 

› Compare single-row and dual-row height cells with the same driving strength 

› Single-row height cells degrade less due to larger LOD 
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INV_X2 NAND2_X1 

Single 9.24 ps 12.63 ps 

Dual 10.94 ps 13.72 ps 

Δ Delay 18.35% 8.56% 



Placement Refinement for Aging Mitigation 

 Post detail placement stage for LDA friendly refinement 

 Target at optimizing EOL timing by modifying 

› LOD: determined by cell structure (height) and type 

› OSE: determined by cell to cell spacing 

 Overall flow 
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Placement Refinement for Aging Mitigation 

 An illustrative example for the LDA mitigation flow 
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Placement Refinement for Aging Mitigation 

 An illustrative example for the LDA mitigation flow 

 

11 

Initial Placement 

Identify EOL Crit. Paths 

Cell on EOL CP Timing path 



Placement Refinement for Aging Mitigation 

 An illustrative example for the LDA mitigation flow 
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Placement Refinement for Aging Mitigation 

 An illustrative example for the LDA mitigation flow 
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Placement Refinement for Aging Mitigation 

 An illustrative example for the LDA mitigation flow 
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Greedy Cell Replacement 

 Objective is to optimize LOD 

 Greedy approach 

› Replace cell if the single-row height cell can fit in initial horizontal spacing  

› Congestion can be considered for pin accessibility 
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Cell on EOL CP Timing Path Modified Cells 



Greedy Cell Spreading 

 Objective is to optimize OSE 

 Naïve method: greedy cell spreading 

› Sort cells on critical paths based on the OSE sensitivity (∆delay/∆OSE) 

› Optimize cell with steepest gradient first 

› Simple implementation and fast run time 

 However, greedy cell spreading affects other cells’ OSE 
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Initial placement Greedy cell spreading 



Concurrent Cell Spreading 

 Simultaneously optimize white space on critical paths 

› Provide holistic OSE improvements for different cells 

 Can be formulated as a linear programming (LP) problem 
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Concurrent cell spreading 

Initial placement Concurrent cell spreading 



LP-based Concurrent Cell Spreading 

 Objective: balance between aging mitigation and cell displacements 

min −𝑓 𝑥𝑖+1, 𝑥𝑖 , 𝑥𝑖−1
𝑖

+ 𝑥𝑖 − 𝑥𝑖
𝑜

𝑖
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LP-based Concurrent Cell Spreading 

 Objective: balance between aging mitigation and cell displacements 

min −𝑘𝑖 𝑥𝑖+1 − 𝑥𝑖−1
𝑖

+ 𝑥𝑖 − 𝑥𝑖
𝑜

𝑖

 

› Aging mitigation approximated as a piecewise linear function of OSE 
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LP-based Concurrent Cell Spreading 

 Objective: balance between aging mitigation and cell displacements 

 min −𝑘𝑖 𝑥𝑖+1 − 𝑥𝑖−1
𝑖

+ 𝑥𝑖 − 𝑥𝑖
𝑜

𝑖

 

› Nonlinear term is not preferred in the objective function 

› Define 𝑑𝑖
𝑟/𝑑𝑖
𝑙 is the right/left edge (upper/lower bound) of the displacement 
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LP-based Concurrent Cell Spreading 

 Objective: balance between aging mitigation and cell displacements 

min −𝑘𝑖 𝑥𝑖+1 − 𝑥𝑖−1
𝑖

+ (𝑑𝑖
𝑟 − 𝑑𝑖

𝑙)

𝑖

 

› Nonlinear term is not preferred in the objective function 

› Define 𝑑𝑖
𝑟/𝑑𝑖
𝑙 is the right/left edge (upper/lower bound) of the displacement 
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LP-based Concurrent Cell Spreading 

 Constraints: 

› Guarantee no overlapping between cells 
 

𝑥𝑖+1 − 𝑥𝑖 ≥ 𝑤𝑖 
 

› Guarantee the relationship between 𝑑𝑖
𝑟, 𝑑𝑖
𝑙, 𝑥𝑖
𝑜 and 𝑥𝑖 

 

𝑑𝑖
𝑟 − 𝑥𝑖

𝑜 ≥ 0, 𝑑𝑖
𝑟 − 𝑥𝑖 ≥ 0 

𝑑𝑖
𝑙 − 𝑥𝑖

𝑜 ≤ 0, 𝑑𝑖
𝑙 − 𝑥𝑖 ≤ 0 
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Dual Min-Cost Flow Transformation 

 The LP problem can be solved by dual min-cost flow transformation 

› Enable to use fast graph algorithm for acceleration 

 Example 

 

 

 
 Objective:  

−𝑘2 𝑥3 − 𝑥1 − 𝑘3 𝑥4 − 𝑥2                                                                      
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Dual Min-Cost Flow Transformation 

 The LP problem can be solved by dual min-cost flow transformation 

› Enable to use fast graph algorithm for acceleration 

 Example 

 

 

 
 Constraints:  
               𝑥2 −𝑥1 ≥ 𝑤1 
               𝑥3 −𝑥2 ≥ 𝑤2 
               𝑥4 −𝑥3 ≥ 𝑤3 
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Dual Min-Cost Flow Transformation 

 The LP problem can be solved by dual min-cost flow transformation 

› Enable to use fast graph algorithm for acceleration 

 Example 

 

 

 
 Constraints:  
                   𝑥1  ≥  𝑙 

    − 𝑥4  ≥ 𝑤4  − 𝑟  

 

 

 

25 

2 1 3 

x1  

4 

x2 x3 x4 

l r 

3 

4 

1 

2 

s t 

-k2 

-k3 

k2 

k3 

-w1,  ∞ 

-w2,  ∞ 

-w3,  ∞ 

-l,  ∞ 

r- w4,  ∞ 



Results 

 IWLS 2005 benchmark 

 Perform EOL timing analysis using Synopsys Primetime 

 Compare three different scenarios 

› Without optimization 

› Greedy optimization 

› Concurrent optimization 
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Results 

 Comparing EOL Total Negative Slack (TNS) and Worst Negative 

Slack (WNS) in greedy optimization 

› On average, TNS reduces by  29.28% after greedy opt. 

› On average, WNS reduces by 16.15% after greedy opt. 
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Results 

 Comparing EOL Total Negative Slack (TNS) and Worst Negative 

Slack (WNS) in concurrent optimization 

› On average, TNS reduces by  42.35% after concurrent opt. 

› On average, WNS reduces by 25.19% after concurrent opt. 
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Results 

 Comparing early-life timing before and after greedy/concurrent opt. 

› Do: CP delay for original placement 

› Dg: CP delay after greedy opt. 

› Dc: CP delay after concurrent opt. 

› On average, less than 0.2% of timing change 
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Results 

 Detained statistics on ckt tv80s 

› Original placement (Early life and EOL)  
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Results 

 Detained statistics on ckt tv80s 

› Greedy optimization 
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Results 

 Detained statistics on ckt tv80s 

› Concurrent optimization 
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Results 

 Detained statistics on ckt tv80s 

› Distribution shifts right means more timing slack 
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Conclusions 

 LDA degrades EOL timing performance 

 We propose Cell replacement and cell spreading techniques for 

placement refinement 

 Proposed framework reduced EOL total negative slack by 42% 

and worst negative slack by 25% on average 
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THANK YOU! 



Dual min-cost flow transformation 

 Original form to Prime form and then transform to dual form 

Prime 
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Dual min-cost flow transformation 

 Change original problem to min-cost flow problem 

min   x1  + 2 x2  + 3x3 + 4 x4 ,  

s.t.    x1 – x2 ≥ 5  ,  

 x4 – x3 ≥ 6  , 

 0  ≤ xi   ≤ 10  , i = 1,2,3,4 

min  10 f01  + 10 f02  + 10 f03  + 10 f04  - 5 f12  - 6 f43  ,  

s.t.     f10  +  f20 +  f30 +  f40 -  f01 -  f02 -  f03 -  f04  = 10  

 f01    -  f10  -  f12   = -1 , 

 f12  +  f02  -  f20   = -2 , 

 f43  +  f03  -  f30  = -3 , 

 f04    -  f40  -  f43   = -4 , 

 

Original problem Min-cost flow problem 
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Dual min-cost flow transformation 

 Graph representation 
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Aging Simulation 
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 Piecewise linear approximation 



LDA Mitigation Framework 
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Results 
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Results 
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