MTTF-aware Design Methodology of Error Prediction Based Adaptively Voltage-scaled Circuits

Yutaka Masuda, Masanori Hashimoto

Osaka University {masuda.yutaka,hasimoto}@ist.osaka-u.ac.jp

Background : Performance Variation

- Circuit speed is more sensitive to PVTA* variation *process, voltage, temperature, and aging
- Conventional countermeasure : Worst case design (WC)
 Adds timing margin assuming worst PVTA conditions

Adaptive Voltage Scaling (AVS)

- Adaptively adjust V_{dd} w/ estimating timing slack
 - Exploit PVTA margin w/ preventing error occurrence

Error Prediction based AVS (EP-AVS)

• Estimate slack \Rightarrow Predict error \Rightarrow Adjust V_{dd}

E.g. TEP-FF (timing error predictive FF)

Voltage-scaled circuit

4

Our work focuses on EP-AVS design w/ TEP-FF.

Conventional Works for EP-AVS

- 1. Design : Only for voltage control logic
 - Voltage-scaled circuit has many critical paths

 ✓ Utilizing high-Vth/smaller cells for power/area savings.
 → We may need to observe many paths w/ EP-AVS
- 2. Evaluation : Not lifetime-aware
 - Timing error may happen when long operation, e.g., years.

Objective : MTTF-aware Design of EP-AVS *mean time to failure

1. Design of both voltage-scaled circuit and TEP-FF.

Extend MTTF and facilitate TEP-FF insertion.

- 2. MTTF-aware performance evaluation
 - Consider long MTTF, e.g., years.
 - Use stochastic error rate estimation method [1].

[1] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye,

Outline

- Background and objective
- Proposed design methodology of EP-AVS
 - Design of voltage-scaled circuit under AVS
 - TEP-FF insertion to voltage-scaled circuit
- Experimental evaluation
- Conclusion

Design of Voltage-Scaled Circuit

This work applies ASA* [2] to voltage-scaled circuit. *adaptive slack assignment

Path

ASA increases setup slack of highly-activated critical paths.

8

- Extend MTTF
- Slack Facilitate TEP-FF insertion

Two step implementation of ASA

Step1 : Increase setup constraint of FF

Step2 : Perform re-synthesis as ECO and restore setup constraint.

[2] Y. Masuda, M. Hashimoto, and T. Onoye,

"Critical path isolation for time-to-failure extension and lower voltage operation," in *Proc. ICCAD*, 2016.

TEP-FF Insertion

This work focuses on failure probability.

• Failure prob. = timing violation prob. × activation prob.

Timing violation prob.

- High act. prob.
- Small Slack
- : Need to predict timing errors
 - : Help to reduce # of buffers in TEP-FF

FF Selection for TEP-FF Insertion ¹⁰

Proposed : Maximize sum of gate-wise failure prob.

E.g. Perform ASA to two FFs

• Proposed selects FF3 and FF1 (not FF3 and FF2)

This work formulates FF selection problem as ILP*. *integer linear programming

Outline

- Background and objective
- Proposed design methodology of EP-AVS
- Experimental evaluation
 - Evaluation setup
 - Performance improvement thanks to EP-AVS
 - Discussion : Effectiveness of ASA
- Conclusion

Evaluation Setup

Experiment: Evaluate average V_{dd} and MTTF w/ EP-AVS

- Target circuit : synthesized w/ 45nm NanGATE cell library
 - OpenRISC processor
 - ▶ 1.46M gates including 589K latches and 2.5K FFs
 - ➢Workload : SHA1, CRC, Dijkstra
 - AES (Advanced Encryption Standard) circuits
 - ≻17K gates including 530 FFs
 - Workload : 1000 random test patterns
- V_{dd} w/ EP-AVS : 1.2V to 0.8V w/ 50 mV interval
- Delay variation source
 - Supply noise, NBTI aging and manufacturing variability
- Target MTTF $: 10^{17}$ Cycles (3.3 years in OpenRISC)

Evaluation Results (OpenRISC)

- 34.0% speed up @ supply voltage of 0.8 V
- 20.8% V_{dd} reduction @ clock period of 1040 \mbox{ps}

Evaluation Results (AES)

• 19.5% speed up, 7.5% V_{dd} reduction
 ➤ Effectiveness of ASA is smaller than OpenRISC.

OpenRISC and **AES**

15

- AES is highly activated circuit

 In AES, intrinsic critical paths w/ high act. prob. exist.
- OpenRISC is more suitable to ASA

Compatibility of EP-AVS and ASA

16

Even w/ ASA, EP-AVS exploits PVTA margins similarly.
 → EP-AVS and ASA are highly comparable.

Comparison of # of Failure FFs

17

ASA reduces # of failure FFs and failure prob. of FFs.
 >ASA helps to facilitate TEP-FF insertion.

Outline

- Background and objective
- Proposed design methodology of EP-AVS
- Experimental evaluation
- Conclusion

Conclusion

- Proposed MTTF-aware design methodology of EP-AVS.
 - -ASA to voltage-scaled circuit.
 - Gate-wise failure prob. aware TEP-FF insertion.
 - Consideration of practical long MTTF, e.g., 3 years.
- Performance evaluation results show that
 - $-20.8 \% V_{dd}$ reduction in OpenRISC.
 - -7.5 % V_{dd} reduction in AES.

Effectiveness of TEP-FF Insertion

Compare MTTF between proposed and slack-based method

⇒ Only proposed insertion methodology achieves target MTTF.

MTTF Estimation

MTTF (Mean Time To Failure)

1. Calculate timing violation and activation probability for all paths in isolated circuit.

Probability

2. Calculate transition rate and estimate MTTF (Next Slide).

MTTF Estimation[1] : Markov Chain

[1] S. lizuka, Y. Masuda, M. Hashimoto, and T. Onoye,

MTTF Estimation [1] : Markov Chain

24

From transition rate, we can know Time To Failure (TTF).

[1] S. lizuka, Y. Masuda, M. Hashimoto, and T. Onoye,

Markov Model w/ Aging State [1] ²⁵

- 3-dimensional Markov chain
 - $-V_{dd},\ \Delta\,V_{dd},$ Aging

[1] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye,

Model of Aging Effect

- 1. Model aging effect from measured data[3].
 - Average degradation data of 666 transistors and fit to equation representing NBTI aging effect[4].
 - $\Delta V_{th}(t) = Xe^{V_g} + Ye^{V_g} \log(1 + Zt)$ (T/D model)
 - $-V_g$: Stress Voltage, X, Y, Z: Constants
- 2. Definition of degradation states
 - 0, 0.5, 1, 5, 10, 15, 20 mV (7 states).
- 3. Calculate transition rate between each pair of states.

 $p_{trans_i} = \frac{1}{t_{stay_i}} \begin{bmatrix} p_{trans_i} : Transition rate to i+1-th state. \\ t_{stay_i} : # of staying cycle in i-th state. \end{bmatrix}$

[3] B. J. Velamala, K. B. Sutaria, H. Shimizu, H. Awano, T. Sato, G. Wirth, and Y. Cao, "Compact Modeling of Statistical BTI Under Trapping/Detrapping," IEEE Trans. ED, vol.60, no.11, pp.3645-3654, 2013.

[4] K. B. Sutaria, J. B. Velamala, C. H. Kim, T. Sato, and Y. Cao, "Aging Statistics Based on Trapping/Detrapping: Compact Modeling and Silicon Validation," IEEE Trans. Device and Materials Reliability, vol.14, no.2, pp.607-615, 2014.

Problem Formulation of FF Selection ²⁷ <u>Maximizing sum of gate-wise failure prob.</u>

- Objective
 - Maximize : $\sum_{k=1}^{N_{inst}} (P_{inst_k_{fail}} \times B_{inst_k})$
- Constraint

- Variable
- $0 \leq B_{\text{inst}_k} \leq 1 \ (1 \leq k \leq N_{\text{inst}})$ $B_{\text{TEP}_i} (1 \leq i \leq N_{\text{FF}})$
- 0 \leq B_{TEP_i} \leq 1 (1 \leq i \leq N_{FF})

$$-\sum_{k=1}^{N_{\rm FF}} \mathbf{B}_{{\rm TEP}_i} \le \mathbf{N}_{{\rm TEP}}$$

- $B_{inst_k} = \bigvee_{k=1}^{N_{FF}} (B_{TEP_i} \times B_{FF_i_inst_k}) \le \sum_{k=1}^{N_{FF}} (B_{TEP_i} \times B_{FF_i_inst_k})$

B _{inst_k}	: It will be 1 when paths ending target FFs include <i>k</i> -th instance.
B_{TEP_i}	: It will be 1 when <i>i</i> -th FF is selected for TEP-FF insertion.
N _{TEP}	: Maximum # of TEP-FF insertion.
$B_{FF_i_inst_k}$: It will be 1 when path ending <i>i</i> -th FF includes <i>k</i> -th instance.