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Background : Performance Variation

• Circuit speed is more sensitive to PVTA* variation

• Conventional countermeasure : Worst case design (WC)
– Adds timing margin assuming worst PVTA conditions
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Adaptive Voltage Scaling (AVS)

• Adaptively adjust Vdd w/ estimating timing slack
– Exploit PVTA margin w/ preventing error occurrence
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Error Prediction based AVS (EP-AVS)
• Estimate slack ⇒ Predict error ⇒ Adjust Vdd
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E.g. TEP-FF (timing error predictive FF)

Our work focuses on EP-AVS design w/ TEP-FF. 



Conventional Works for EP-AVS
1. Design : Only for voltage control logic

• Voltage-scaled circuit has many critical paths
 Utilizing  high-Vth/smaller cells for power/area savings.

→ We may need to observe many paths w/ EP-AVS

2. Evaluation : Not lifetime-aware 
• Timing error may happen when long operation, e.g., years.
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Objective : MTTF-aware Design of EP-AVS

[1] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye, 
“Stochastic Timing Error Rate Estimation under Process and Temporal Variations,”   in Proc. ITC, 2015.
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1. Design of both voltage-scaled circuit and TEP-FF.

2. MTTF-aware performance evaluation
• Consider long MTTF, e.g., years.
• Use stochastic error rate estimation method [1]．

• Extend MTTF and facilitate TEP-FF insertion.
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*mean time to failure



Outline
• Background and objective
• Proposed design methodology of EP-AVS

– Design of voltage-scaled circuit under AVS
– TEP-FF insertion to voltage-scaled circuit

• Experimental evaluation
• Conclusion
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Design of Voltage-Scaled Circuit

Two step implementation of ASA
Step1 : Increase setup constraint of FF
Step2 : Perform re-synthesis as ECO and restore setup constraint.

Slack : 0 ps Slack : 50 ps

Slack

# Path
ASA increases setup slack of 
highly-activated critical paths.
• Extend MTTF
• Facilitate TEP-FF insertion

[2] Y. Masuda, M. Hashimoto, and T. Onoye, 
“Critical path isolation for time-to-failure extension and lower voltage operation,”   in Proc. ICCAD, 2016.

This work applies ASA* [2] to voltage-scaled circuit．
*adaptive slack assignment

8



TEP-FF Insertion

• High act. prob. : Need to predict timing errors
• Small Slack : Help to reduce # of buffers in TEP-FF
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This work focuses on failure probability.

Timing violation prob.

Activation prob.
Target FFs

• Failure prob. = timing violation prob. × activation prob.



FF Selection for TEP-FF Insertion
Proposed : Maximize sum of gate-wise failure prob.

This work formulates FF selection problem as ILP*.

E.g. Perform ASA to two FFs
• Proposed selects FF3 and FF1 (not FF3 and FF2)
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Outline
• Background and objective
• Proposed design methodology of EP-AVS
• Experimental evaluation

– Evaluation setup
– Performance improvement thanks to EP-AVS
– Discussion : Effectiveness of ASA

• Conclusion
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Evaluation Setup

• Target circuit : synthesized w/ 45nm NanGATE cell library
– OpenRISC processor
1.46M gates including 589K latches and 2.5K FFs
Workload : SHA1, CRC, Dijkstra

– AES (Advanced Encryption Standard) circuits
17K gates including 530 FFs
Workload : 1000 random test patterns

• Vdd w/ EP-AVS : 1.2V to 0.8V w/ 50 mV interval
• Delay variation source

– Supply noise, NBTI aging and manufacturing variability
• Target MTTF  : 1017 Cycles (3.3 years in OpenRISC)

Experiment: Evaluate average 𝐕𝐕𝐝𝐝𝐝𝐝 and MTTF w/ EP-AVS
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Evaluation Results (OpenRISC)
• 34.0% speed up         @ supply voltage of 0.8 V
• 20.8% Vdd reduction @ clock period of 1040 ps
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Evaluation Results (AES) 14

• 19.5% speed up， 7.5% Vdd reduction
Effectiveness of ASA is smaller than OpenRISC.

Area overhead : 7.0% (ASA 6.0% + EP-AVS 1.0%)
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OpenRISC and AES 15

• AES is highly activated circuit
– In AES, intrinsic critical paths w/ high act. prob. exist.

• OpenRISC is more suitable to ASA
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Compatibility of EP-AVS and ASA 16
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• Even w/ ASA, EP-AVS exploits PVTA margins similarly.
→ EP-AVS and ASA are highly comparable. 
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Outline
• Background and objective
• Proposed design methodology of EP-AVS
• Experimental evaluation
• Conclusion
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Conclusion

• Proposed MTTF-aware design methodology of EP-AVS.           
– ASA to voltage-scaled circuit.
– Gate-wise failure prob. aware TEP-FF insertion.
– Consideration of practical long MTTF, e.g., 3 years.

• Performance evaluation results show that
– 20.8 % Vdd reduction in OpenRISC.
– 7.5 % Vdd reduction in AES.
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Effectiveness of TEP-FF Insertion
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MTTF Estimation
MTTF (Mean Time To Failure)

1. Calculate timing violation and activation probability for all   
paths in isolated circuit.

2. Calculate transition rate and
estimate MTTF (Next Slide).
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MTTF Estimation[1] : Markov Chain
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[1] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye, 
“Stochastic Timing Error Rate Estimation under Process and Temporal Variations,”   in Proc. ITC, 2015.



MTTF Estimation [1] : Markov Chain

From transition rate, we can know Time To Failure (TTF).
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[1] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye, 
“Stochastic Timing Error Rate Estimation under Process and Temporal Variations,”   in Proc. ITC, 2015.



Markov Model w/ Aging State [1]
• 3-dimensional Markov chain

– Vdd， Δ Vdd，Aging

Degradation 
State 0

Vdd

Δ Vdd

Vdd Vdd

Δ Vdd Δ Vdd

Degradation 
State 1

Degradation 
State 2

Degrade according to transition
rate representing aging effect.
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[1] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye, 
“Stochastic Timing Error Rate Estimation under Process and Temporal Variations,”   in Proc. ITC, 2015.



Model of Aging Effect
1. Model aging effect from measured data[3].

• Average degradation data of 666 transistors and fit to 
equation representing NBTI aging effect[4] ．

• ∆Vth t = XeVg + YeVg log(1 + Zt) (T/D model)
– Vg : Stress Voltage，X，Y，Z : Constants

2. Definition of degradation states
• 0，0.5，1，5，10，15，20 mV (7 states)．

3. Calculate transition rate between each pair of states.

ptrans_i =
1

tstay_i

ptrans_i : Transition rate to i+1-th state.
tstay_i : # of staying cycle in i-th state. 

[3] B. J. Velamala, K. B. Sutaria, H. Shimizu, H. Awano, T. Sato, G. Wirth, and Y. Cao, “Compact Modeling
of Statistical BTI Under Trapping/Detrapping,” IEEE Trans. ED, vol.60, no.11, pp.3645-3654, 2013.
[4] K. B. Sutaria, J. B. Velamala, C. H. Kim, T. Sato, and Y. Cao, “Aging Statistics Based on Trapping/Detrapping: 

Compact Modeling and Silicon Validation,” IEEE Trans. Device and Materials Reliability, vol.14, no.2, pp.607-615, 2014. 
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Problem Formulation of FF Selection
Maximizing sum of gate-wise failure prob.
• Objective

- Maximize : ∑𝑘𝑘=1
Ninst(Pinst𝑘𝑘_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × Binst𝑘𝑘)

• Constraint
- 0 ≤ Binst𝑘𝑘 ≤ 1 (1 ≤ 𝑘𝑘 ≤ Ninst)
- 0 ≤ BTEP𝑖𝑖 ≤ 1 (1 ≤ 𝑖𝑖 ≤ NFF)
- ∑𝑘𝑘=1

NFF BTEP𝑖𝑖 ≤ NTEP

- Binst𝑘𝑘 = ⋁𝑘𝑘=1
NFF(BTEP𝑖𝑖 × B𝐹𝐹𝐹𝐹𝑖𝑖_𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑𝑘𝑘) ≤ ∑𝑘𝑘=1

NFF(BTEP𝑖𝑖 × B𝐹𝐹𝐹𝐹𝑖𝑖_𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑𝑘𝑘)

Binst𝑘𝑘 : It will be 1 when paths ending target FFs include k-th instance. 

BTEP𝑖𝑖 : It will be 1 when i-th FF is selected for TEP-FF insertion.   

NTEP : Maximum # of TEP-FF insertion.

B𝐹𝐹𝐹𝐹𝑖𝑖_𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑𝑘𝑘 : It will be 1 when path ending i-th FF includes k-th instance.

• Variable
- BTEP𝑖𝑖(1 ≤ 𝑖𝑖 ≤ NFF)
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