A Highly Compressed Timing
Macro-modeling Algorithm for Hierarchical
and Incremental Timing Analysis

Tin-Yin Lai, and Martin D. F. Wong

Jan. 23,2018

ECE ILLINOIS Iirrinors

Outline

e Introduction
o Timing Macro-modeling
o Problem Formulation
o Previous Work - ILM
e Algorithm
Clocktree Construction
Forward Abs-tree (Out-tree) Graph Reduction

Cross Abs-edges Reduction

O O O O

Constraint Reduction

o Multi-threading using OpenMP
e EXxperimental Results
e Conclusion

Introduction

e Designs are large
o Hierarchical timing analysis
o Incremental timing analysis
e Highly compressed timing macro-models are needed

Keep changing in gray area Keep changing in gray area
(top-level circuit) (top level 01rcu1t)

Flat fixed Flat fixed
block-level circuit| | block-level

Flat fixed circuit
block-level circuit| | Flat fixed
Flat fixed block-level -

block-level circuit| | CIrcuit Using timing

Flat fixed | | Flat fixed macro mode

block-level | |block-level
circuit circuit

Faster!

ECE ILLINOIS 3

Problem Formulation

e Goal
o Accurate boundary timing reproduction
o Small model size
o Fast runtime for timing analysis
o In-context usage (incremental)
e |nputs
o A set of circuit design
o A set of boundary timing
m Macro models usually are used under certain boundary timing
e Outputs
o A timing macro model
m The ability to reproduce timing information on primary input ports
and primary output ports

ECE ILLINOIS ¢ @LLLINOTLS

Previous Work - Interface Logic Model (ILM)

e The boundary timing for a block-level circuit is sufficient for timing
macro usage in hierarchical timing analysis

o Reproduce correct timing information on all the input ports and
all the output ports

o |ILM keep nodes and edges that can only be observed from input
ports and output port

| | :\) |

[[[

[1] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, “Automated timing model generation,” In Proc of DAC ’02.

ECE ILLINOIS 5 @LLLINOTLS

| Previous Work - Interface Logic Model (ILM)

e Implementation of ILM
o Apply BFS from input ports until we find the first D pins
m Back traverse to find all incoming timing paths for these D
pins
o Apply BFS from output ports back traverse until we find Q pins
o We will deal with the clocktree later (keep it for now)

>— Q|

D

[[[

ECE ILLINOIS 6 @LLLINOTLS

Algorithm - Program Flow

Construct an abstraction graph (ILM, in-tree)

Construct a clocktree abstraction graph

Reduce clocktree

A

Find common points

| ——

v
Determine boundary timing [3]
7 Clkm
Abstract timing [3]
[- __C_Ik_ ______
Reduce Reduce
forward backward Recuge Redoge
Cross constraint i
abs-tree abs-tree abs-edges arcs A
(out-tree) (in-tree) [3] g

v

77 $777,,777,,777,,777,777,,777,,777,,777,,777,,777”777,777
Abstract timing on new abs-edge ey -
Remove redundant abs-edges %

Update LUT template [3]

[3] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling
Algorithm for Large Hierarchical Designs.” Proceedings of the 54th ACM/IEEE Design Automation Conference -

DAC ’17 IEEE Press, 2017.

ECE ILLINOIS 7

[MILLLINOTS

Algorithm - Clocktree reduction

e To maintain the CPPR
o We have to keep the common point for any pairs of D pin and Q
pin that exist timing paths
e Noted that there might be no timing path from the leaf pin of
clocktree because ILM is applied
e Steps:
o Find common points using dynamic programming
o Construct the new clocktree from common points using BFS
m Condition for BFS
e Visited
® |scommon point ¢
® Is leaf of clocktree

ECE ILLINOIS 8 @LLLINOTLS

Algorithm - Forward Abs-tree Graph Reduction

e Apply BFS to reduce forward tree structures
o Condition for BFS in new timing graph
construction

m Multiple fanin edges
m No fanout edges
m Visited

Algorithm - Cross Abs-edges Reduction

e Cross structure
o A node with multiple fanin edges and multiple fanout edges
e Connect from the fanin nodes to fanout nodes of the cross
structure
o Merge the new edges if there already exists a edge

® A 2-to-2 cross reduction example
o Delay (min, max)

g£(2,6) a, g merged
| (1, 6)

a(l, 2)

12,5 j@3, 6 i(2,5)

b, h merged
2,5)

ECE ILLINOIS 10 @LLLINOTLS

Algorithm - Constraint Reduction

e Constraint edges provide timing constraints for calculating timing
slacks
o Include delay information on clocktree into constraint edges to
reduce edges

; : ginal Lginal
constraintearty = constrainty, 9" + dalayZ; 9" (1)

original

original
late o d&iﬂy 4 (2)

constraint)j e = constraint e

Constraint ¢

Clk Clk

| Algorithm - Usage of Reduction Algorithms

Forward abs-tree reduction
v
Backward abs-tree reduction
*
Two-Two cross abs-tree reduction
\ 4
Three-Two cross abs-tree reduction
¥
Two-Three cross abs-tree reduction
+

Backward abs-tree reduction
¥

Forward abs-tree reduction
v
Constraint arcs reduction

Experimental Results (1)

e Accuracy, performance of macro-model generation

Accuracy (Generate timing macro-model

Circuits Our work LibAbs [3] iTimerM [5]F Our work LibAbs [3] iTimerM [5]F
max. max. dif f mazx. | dif f | runtime | mem | runtime | mem | runtime | mem
mgc_edit_dist 0.15769 0.24414 | 0.08644 | 0.04 | -0.11 15.018 <0.005 13.51 1.68 14.12 0.71
vga_led 0.25498 0.17749 | -0.0775 0.03 | -0.21 24.134 0.39 18.31 2.27 14.67 0.85
leon3mp 0.22044 0.25952 | 0.03908 | 0.04 | -0.18 77.516 <0.005 109.64 11.85 54.65 4.05
netcard 0.20312 0.16796 | -0.03516 | 0.06 | -0.14 100.77 12.32 117.31 12.49 78.76 4.55
leon2 0.24101 0.16797 | -0.07304 | 0.06 | -0.18 104.56 14.94 136.66 14.97 113.32 5.59

e Macro usage (Non-incremental timing)

st (;}ur work ’ LibAbs [3] , iTimerM [5]*¥*
runtime mMent runtime memn. COMPruntime COMPrem | TUNRLIME | MEM. | COMPruntime | COMPmem
mgc_edit_dist 4.345 <0.005 9.737 <0.005 T1.62% E 10.01 1.01 43.41% <0.50%
vga_led 4.187 <0.005 | 11.151 <0.005 37.55% - 9.44 0.99 44.35% <0.51%
leon3mp 5.074 <0.005 | 64.983 12.00 7.81% <0.04% 11.31 1.09 44.86% <0.46%
netcard 22.524 4.23 68.855 12.54 32.71% 33.7% A7.42 5.12 47.50% 82.62%
leon2 38.417 5.19 81.799 15.361 46.97% 33.8% 74.94 8.17 51.26% 63.53%

[38] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.” Proc of DAC ’17
[5] P.-Y. Lee, Iris H.-R. Jiang, “iTimerM: Compact and Accurate Timing Macro Modeling for Efficient Hierarchical Timing Analysis.” in Proc. of ISPD *17. ACM, 2017.

ECE ILLINOIS 13

Experimental Results (2)

e Model size
o Compared to [3]

Circuit mgc_edit_dist
Work [Original LibAbs [3] Our work
Unit Num Num 70 Num 7
IN| 081319 95288 | 16.39% | 46033 7.92%
E 691863 | 211461 | 30.56% | 135234 | 19.55%
[Clk N| | 67724 | 10449 | 15.43% | 9753 | 14.40%
CIKL] | 153 30 | 25.49% | 34 | 22.22%
Circui vega_led leon3mp
Work | Original LibAbs [3] Our work Original LibAbs [3] Our work
Unit Num Num Y0 Num 7 Num Num Yo Num Yo
IN]| 768050 | 129240 | 16.83% | 42791 5.57% | 4167632 | 753406 | 18.087% | 86582 2.08%
|E| 894826 | 273016 | 30.51% | 119304 | 13.33% | 4830700 | 1525362 | 31.58% | 151689 | 3.14%
|Clk N| | 205432 | 31555 [Ib.367% | 14208 [6.92% | 1305908 | 200905 [I5.387% | 82042 [6.28%
|Clk L 191 o6 29.32% 41 21.47% 245 76 31.02% 66 26.94% |
Circuit netcard leon2
Work [Original LibAbs [3] Our work Original LibAbs [3] Our work
Unit Num Num Y0 Num [% Num Num Yo Num %
IN| 4458141 783831 17.58% | 282349 || 6.33% | 5179094 | 949427 | 18.33% | 449102 8.67%
|E| 5264603 | 1688054 | 32.06% | 597399 || 11.35% | 5974414 | 1894248 | 31.71% | 1166964 | 19.53%
|Clk N| [1173710 | 180595 [In.397% | 142064 [IZ.10% | 1793548 | 275931 [Io.387% | 158634 T 8.847%
CIk L] | 247 76 | 30.77% | 68 | 27.53% | 265 86 | 32.45% | 72 | 2r.17%

3] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.” Proc of DAC ’17

ECE ILLINOIS 14

Experimental Results (3)

e Model size
o Compared to [5]
o [5] reports their model size in file size

Circuit mgc_edit_dist vga_led leon3mp
Work iTimerM |[5] Our work iTimerM |[5] Our work iTimerM [5] Our work
Unit MB MB Yo MB MB Yo MB MB Y0
Liberty file size(MB) 90 79 84 72 96 86 | 89.6%
Circuit netcard leon2 |
Work iTimerM [5] Our work iTimerM [5] Our work
Unit MB MB Y MB MB %
Liberty file size(MB) 435 372 | 85.5% 713 676 | 94.8%

[6] P.-Y. Lee, Iris H.-R. Jiang, “iTimerM: Compact and Accurate Timing Macro Modeling for Efficient Hierarchical Timing Analysis.” in Proc. of ISPD ’17. ACM, 2017.

ECE ILLINOIS 15 @LLLINOTLS

Experimental Results (4)

e In-context usage (incremental timing)
o X axis: # of incremental changes
O vy axis: runtime (s)

vga_led total rumtime (s) leon3mp total rumtime (s) mge_edit_dist total rumtime (s)
1500 10000 1500
£ 1000 L £ 1000
g g g
£ £ 5000 =
o -:3 - __p'/
g 500 E 5 sm0 =
= = = o
_,—F___-H::_—_-___-__—“___
0] - (bt =
i} 200 400 600 00 0 200 400 GO0 800 0 200 400 G0 800
Operation size Operation size Operation size
(a) vga_led (b) leon3mp (c) mge_edit_dist
neteard total rumtime (s) leon? total rumtime (s)
10000 — 15000
i 210000 L
< @ a6l
= 2
= a000 = v T
g7 = e + The flatten circuits
= - = 5000 i
& g = /] 0 LibAbs [3]
T N o] *_Our work
ol o =
0 200 400 600 00 i 200 400 G600 800
Operation size Operation size
(c) netcard (d) leon2

[3] T.-Y.Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.” Proc of DAC *17

ECE ILLINOIS 16

l@ Elwl;,]hwmpﬁlgj

Conclusions

e Our algorithm generates highly compressed timing
macro-models efficiently
o Accurate
m About the same
o Model size
m Compared to the original timing graph
® 9% in number of nodes
® 19% in number of edges
o Timing macro usage (non-incremental)
m More than x2 times faster compared to the states of arts
o In-context usage (incremental timing)
m x5 times faster compared to the flat timing analysis
m x1.7 times faster compared to the states of arts

ECE ILLINOIS 17 @LLLINOTLS

Thank youl!

Acknowledges

Prof. Martin Wong, UIUC CAD group, NCTU iTimerM, and 2017 TAU Timing
Contest Committees

ECE ILLINOIS 18 T LLLLEO LS

Timing Macro-modeling

® Timing macro-modeling
o Abstracts timing behavior of a sub-design into a timing macro

model to speed up the timing analysis
o Speed up incremental optimization flow
m In-context usage
o An essential step in the hierarchical timing analysis

Algorithms - Abstract Timing - Initiate Indices (1)

e |nitiate indices
o Delay and slew on wires
m Based on the Elmore delay model
o Delay and slew on cell arcs are non-differentiable functions
m Derived from interpolation Look-Up Table

o To minimize the accuracy loss LibAbs
m Sample on non-differentiable points Construct an abstraction graph
A éFixéd Ioéd : . A : 1 2o

g i 5 g W Determine boundary timing
E Afnc;;\-;:liffeigentiable S V | 1 S

function qg) Egsaccracy Abstract timing

. —— < L 1
min! | mak PR min! | mak
sa?m?le pgimg 816va indices ngw*slevt .*]r1$c:es>

ECE ILLINOIS

20

ILLLINOIS

Algorithms - Abstract Timing - Initiate Indices (2)

e Initiate indices LibAbs

Construct an abstraction graph

1.0 2.0 3.0 4.0 5.0 6.0 : 1 —
40 5.6 5.7 5.8 8.0/ 6.0 6.1 6.2 | | Determine boundary timing
50 7273 74 9.0 8.6 8.7 838 |¥ (Oadrgnaz Ogaczlm) |
K \"‘ = (éln]3 Abstract timing
impulse = 0.5) e 1 |
»\] s
\l\".
a
.T
Source
(slew ., slew) abs-ed, ge 8.2

=(1.2,2.5) abs-edge indicies

slew pyree = \/ slew? — impulse?

Algorithms - Abstract Timing - Infer Timing (3)

e Infer timing
o Given a pair of (source slew, sink load)

O Belaisives—iink = Z delay values of corresponding edges
o slewginr = slew derived from LUT or parasitic wire

m LUT for cell arc

® |Interpolate the Look-Up Table LibAbs

m Wire parasitic Construct an abstraction graph

® slewr = \/slewgomce + 1mpulse? 1
Determine boundary timing

!

Abstract timing

2

Algorithms - Abstract Timing - Infer Timing (4)

LibAbs

e Infer timing

Construct an abstraction graph

1.0 2.0 3.0 4.0 5.0 6.0 l’
40| 56 5.7 5.8 8.0 6.0 6.1 6.2 Determine boundary timing
50|72 73 7.4 9.0 8.6 8.7 8.8 | (load,,load) 1
\ =(82,82)
K : sink Abstract timing
impulse = 0.5 1
>
| —
_a
---.
sSource
(slew ., slew) abs-edge 8.2

=(1.2,2.5) abs-edge indicies

delay = delay, + delay, + delay. + delay; + delay.
{ slewginr = LUT interpolation b,d

slewgine = \/ slew?,rce + tmpulse? a,c,e

