
A Highly Compressed Timing
Macro-modeling Algorithm for Hierarchical

and Incremental Timing Analysis

Tin-Yin Lai, and Martin D. F. Wong
Jan. 23, 2018

2

Outline
● Introduction

○ Timing Macro-modeling
○ Problem Formulation
○ Previous Work - ILM

● Algorithm
○ Clocktree Construction

○ Forward Abs-tree (Out-tree) Graph Reduction

○ Cross Abs-edges Reduction

○ Constraint Reduction

○ Multi-threading using OpenMP
● Experimental Results
● Conclusion

3

Introduction
● Designs are large

○ Hierarchical timing analysis

○ Incremental timing analysis

● Highly compressed timing macro-models are needed

Faster!

4

Problem Formulation
● Goal

○ Accurate boundary timing reproduction
○ Small model size
○ Fast runtime for timing analysis
○ In-context usage (incremental)

● Inputs
○ A set of circuit design
○ A set of boundary timing

■ Macro models usually are used under certain boundary timing
● Outputs

○ A timing macro model
■ The ability to reproduce timing information on primary input ports

and primary output ports

5

Previous Work - Interface Logic Model (ILM)
● The boundary timing for a block-level circuit is sufficient for timing

macro usage in hierarchical timing analysis

○ Reproduce correct timing information on all the input ports and
all the output ports

○ ILM keep nodes and edges that can only be observed from input
ports and output port

[1] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, “Automated timing model generation,” In Proc of DAC ’02.

clk

6

Previous Work - Interface Logic Model (ILM)
● Implementation of ILM

○ Apply BFS from input ports until we find the first D pins
■ Back traverse to find all incoming timing paths for these D

pins
○ Apply BFS from output ports back traverse until we find Q pins
○ We will deal with the clocktree later (keep it for now)

clk

D

D

Q

7

Algorithm - Program Flow

[3] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling
Algorithm for Large Hierarchical Designs.” Proceedings of the 54th ACM/IEEE Design Automation Conference -
DAC ’17 IEEE Press, 2017.

8

● To maintain the CPPR
○ We have to keep the common point for any pairs of D pin and Q

pin that exist timing paths
● Noted that there might be no timing path from the leaf pin of

clocktree because ILM is applied
● Steps:

○ Find common points using dynamic programming
○ Construct the new clocktree from common points using BFS

■ Condition for BFS
● Visited
● Is common point
● Is leaf of clocktree

Algorithm - Clocktree reduction

9

● Apply BFS to reduce forward tree structures
○ Condition for BFS in new timing graph

construction
■ Multiple fanin edges
■ No fanout edges
■ Visited

Algorithm - Forward Abs-tree Graph Reduction

10

● Cross structure
○ A node with multiple fanin edges and multiple fanout edges

● Connect from the fanin nodes to fanout nodes of the cross
structure
○ Merge the new edges if there already exists a edge

● A 2-to-2 cross reduction example
○ Delay (min, max)

Algorithm - Cross Abs-edges Reduction

11

Algorithm - Constraint Reduction
● Constraint edges provide timing constraints for calculating timing

slacks
○ Include delay information on clocktree into constraint edges to

reduce edges

12

Algorithm - Usage of Reduction Algorithms

13

Experimental Results (1)
● Accuracy, performance of macro-model generation

● Macro usage (Non-incremental timing)
●
●

[3] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.” Proc of DAC ’17
[5] P.-Y. Lee, Iris H.-R. Jiang, “iTimerM: Compact and Accurate Timing Macro Modeling for Efficient Hierarchical Timing Analysis.” in Proc. of ISPD ’17. ACM, 2017.

14

Experimental Results (2)
● Model size

○ Compared to [3]

[3] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.” Proc of DAC ’17

15

Experimental Results (3)
● Model size

○ Compared to [5]
○ [5] reports their model size in file size

[5] P.-Y. Lee, Iris H.-R. Jiang, “iTimerM: Compact and Accurate Timing Macro Modeling for Efficient Hierarchical Timing Analysis.” in Proc. of ISPD ’17. ACM, 2017.

16

Experimental Results (4)
● In-context usage (incremental timing)

○ x axis: # of incremental changes
○ y axis: runtime (s)

[3] T.-Y. Lai, T.-W. Huang, Martin D. F. Wong, “LibAbs: An Efficient and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.” Proc of DAC ’17

17

Conclusions
● Our algorithm generates highly compressed timing

macro-models efficiently
○ Accurate

■ About the same
○ Model size

■ Compared to the original timing graph
● 9% in number of nodes
● 19% in number of edges

○ Timing macro usage (non-incremental)
■ More than x2 times faster compared to the states of arts

○ In-context usage (incremental timing)
■ x5 times faster compared to the flat timing analysis
■ x1.7 times faster compared to the states of arts

18

Thank you!

Acknowledges
Prof. Martin Wong, UIUC CAD group, NCTU iTimerM, and 2017 TAU Timing
Contest Committees

19

● Timing macro-modeling
○ Abstracts timing behavior of a sub-design into a timing macro

model to speed up the timing analysis

○ Speed up incremental optimization flow

■ In-context usage

○ An essential step in the hierarchical timing analysis

Timing Macro-modeling

20

Algorithms - Abstract Timing - Initiate Indices (1)
● Initiate indices

○ Delay and slew on wires
■ Based on the Elmore delay model

○ Delay and slew on cell arcs are non-differentiable functions
■ Derived from interpolation Look-Up Table

○ To minimize the accuracy loss
■ Sample on non-differentiable points

21

Algorithms - Abstract Timing - Initiate Indices (2)
● Initiate indices

22

Algorithms - Abstract Timing - Infer Timing (3)
● Infer timing

○ Given a pair of (source slew, sink load)

○ delay source-sink = ∑ delay values of corresponding edges
○ slew sink = slew derived from LUT or parasitic wire

■ LUT for cell arc

● Interpolate the Look-Up Table

■ Wire parasitic

●

23

Algorithms - Abstract Timing - Infer Timing (4)
● Infer timing

