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Motivation

= Hybrid electric vehicles (HEVS) combine the energy
efficiency of electric motor (EMs) and a long driving range of
Internal combustion engine (ICE)

= The relatively complicated powertrain structures of HEVs
necessitate an effective power management policy to
determine the power split between ICE and EM

BMW Concept 7 Series ActiveHybrid
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HEV System Architecture

= HEV Components
= Internal Combustion Engine (ICE)
= Electric motor (EM)
= Vehicle Dynamic
= Powertrain Mechanics

= HEV Control

= The HEV controller needs to control the operation of the
ICE, EM and powertrain to meet the target propulsion



HEV System Architecture -- HEV Components

= Parallel hybrid powertrain
= |ICE and EM propel the vehicle in parallel

Parallel Drivetrain

= Internal Combustion Engine (ICE)
= |ICE fuel efficiency:

nice(Trce,wice) =Tice -wice /(g - D)

Wwih, < wrop < whE
0 <Trecr <Tii5(wicr).



HEV System Architecture -- HEV Components

= Electric Motor (EM)

= a motor to propel the vehicle solely or together with ICE
= a generator to charge the battery pack

(TEr - wEM)/Poatt Tern >0

TIEM(TEM?MEM) — { Pba,tt/(TEM 'WEM) ITerv <0

max

0 <wpwm < wWgr,

TE wpa) < Tpy < TR (wpa).



HEV System Architecture -- HEV Components

= Vehicle Dynamics
Frr=m-a+ Fy+ Fr+ Fap,
Fy=m-g-sind,
Fr=m-g-cosf-Cg,
Fap :0.5-p-CD-AF-1)2j
= The demanded power for propelling the vehicle:
Twh = FTR - Twh,
Wwh = V/Twh-

Pdem:FTR'U:Twh'wwh-



HEV System Architecture -- HEV Components

s Powertrain Mechanics

= The speed and torque of the ICE and EM must satisfy the
speed and torgue relation:

WICE WEM

Wwh — ~ — : ,
"7 R(j)  R(j) preg
Twh = R(j) - (Trce + preg - Ten - (Nreg)”) - (7795)5

a_{ +1 Tgam >0,
- —1 Tga <0.

)8 _ { +1 TICE + Preg TEM . (nreg)a > 07
—1 TICE + p’reg . TEM . (nreg)a < 0.



HEV System Architecture -- HEV Control

= The speed and acceleration are determined
by the driver

= The HEV controller controls the operation of the ICE,
EM and powertrain to meet the target propulsion

= Control Variables:
= The battery output power
= The gear ratio

= The ICE torque
= The EM torque

= control variables follows the operating principles of
HEV components
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DRL Framework

s Basics of DRL

s DRL Formulation

= State Space
= Action Space
= Reward Function

s DRL Procedure
= Offline DNN Construction
= Online Deep Q-Learning
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DRL Framework -- DRL basics

= Interaction between agent and environment

Agent

(7

Reward Action

Environment 0/

= Environment responds to actions and presents new situations to
the agent

= Environment also gives rise to rewards

= Agent selects actions
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DRL Framework -- DRL basics

= value function
= the expected accumulated reward with discount

Q(s,a) =E [ i Vo |30, @U}
k=0

= the reward
= the negative of the fuel consumption in the time slot

e = —’fn,f*AT

= The DRL agent targets at maximizing the Q value
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DRL Framework
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DRL Framework -- DRL Formulation

= State Space
= A finite number of states, each represented by:
» the propulsion power demand,
> vehicle speed,
» charge stored in the battery pack,
» predicted propulsion power demand for the next time slot

S = {S — [pdem: 'U,,qu?"e]T |pd6m € Piem,
(UNS V?q < QFPTB S PPTE}
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DRL Framework -- DRL Formulation

= State Space

= Q Is constructed by discretizing the range of charge
stored in the battery pack

Q =1491,92," " ,qN },
Qmin = @1 < Q2 < ... < N = Qmaxzx

= Incorporate future driving characteristics (i.e., pre) into
consideration for more effective representation

pre; < (1 —«) -pre;,_; + a - meas;_,
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DRL Framework -- DRL Formulation

= Action Space
= A finite number of actions, each represented by:
» the discharging current of the battery pack
> the gear ratio

A={a=[i,R(j)]" i € I,R(j) € R}
= [ :afinite (discretized) number of discharging current
values in [—I,naz; Imaz)
1 > () :discharge the battery pack
1 < (0 :charge the battery pack

= R contains all allowable gear ratio values

= Usually 4 or 5 values y



DRL Framework -- DRL Formulation

s Reward Function
T = —mf-AT

=« Tk is the reward the agent receives after taking action
Ak in state Sk
= the negative of the fuel consumption in the time slot

= DRL agent targets at maximizing the expected return

00 k
=07 Tk,

= the discounted sum of rewards
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DRL Framework

= Basics of DRL
= DRL Formulation
= State Space
= Action Space
= Reward Function

s DRL Procedure
= Offline DNN Construction
= Online Deep Q-Learning
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DRL Framework -- DRL Procedure

= The DRL procedure comprises:
= an offline DNN construction phase
= an online deep Q-learning phase

= Offline DNN construction
= derives the Q-value estimate for each state-action pair

= employ a convolutional neural network as the DNN
structure

= The real world and testing driving cycles are utilized to
obtain the Q value estimates for the training of DNN
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DRL Framework -- DRL Procedure

= online deep Q-learning phase

= At each decision epoch, the policy selects

» the action with the maximum Q(sg,a) value estimate with
probability 1 — £,
» or arandom action with probability &

= At the next decision epoch, update Q-value
Q(Sa O_',) — Q(S.},ﬁ) + Q- 8(8, G’) : 53
0 ¢ Tk41 + 7 H}EXQ(SkWLlaaf) — Q(8k, ak).

« 75(Sk,ax) is the observed reward
= (¢ IS a coefficient controlling the learning rate

= )} isthe discount rate
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DRL Framework -- DRL Procedure

Algorithm 1 The DRL Framework of HEV power control

Offline:
1: Simulate the control process using an arbitrary but gradu-
ally refined policy for enough long time;
2: Obtain the state transition profile and Q(s, a) value esti-
mates during the process simulation;
3: Store the state transition profile and Q(s.a) value esti-
mates in experience memory [ with capacity Np;
4: Train a DNN with features (s, a) and outcomes Q(s, a);
Online:
5: for each execution sequence do
6:  for each decision epoch t;, do

7: With probability 1 — ¢ select the action a; =
arg max,(Q(sy,a), otherwise select an action ran-
domly;

Perform system control using the chosen action;
Observe reward 7p(sk,ar) during time period
[tr, tr+1) and the new state s, at the next epoch;

10: Store transition set (S, ax, 7, Spr1) in D;

11: Update Q(sy.,ax) using max, Q(sp.1,a’) and
ri.(Sk, ax ) based on the Q-learning updating rule;

12:  end for

13:  Update DNN weight set # based on the newly updated

QQ-value estimates in a mini-batch manner;
14: end for
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Experimental Results

= based on both real-word and testing driving cycles

= compared with the rule-based policy

Driving cycle | Rule-based | Proposed method | reduction
UDDS 412.3¢g 303.5¢ 26.4%
NEDC 319.8¢ 203.5¢ 36.4%
NYCC 86.1g 37.6g 56.3%

HWFET 364.0g 201.9¢ 44.5%
Modeml 228.6¢g 162.6g 28.9%
Modem?2 344.9¢ 225.6¢ 34.6%

total 1755.7¢g 1134.7¢ 35.4%

25




Experimental Results

= compared with the rule-based policy
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The MPG values achieved by the proposed DRL
framework and the rule—based policy



Experimental Results

= compared with the RL-based method
= employ
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= Prediction can decreases fuel consumption

= DRL-based power control can achieve better fuel
economy than the RL-based framework
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