
Arun Chandrasekharan1,+

Stephan Eggersglüß1,2,*

Daniel Große1,2

Rolf Drechsler1,2

1University of Bremen, Germany
2DFKI Bremen, Germany
+now with OneSpin Solutions, Germany
*now with Mentor, a Siemens Business, Germany

grosse@informatik.uni-bremen.de

Approximation-aware Testing for
Approximate Circuits

DR 287/29-1 & DR287/23-1 graduate school, funded by

German Excellence Initiative

2

Agenda

• Introduction

• Error Metrics

• Approximation-aware Testing for Approx. Circuits

– Approximation Redundant Faults

– Approximation-aware Fault Classification

• Experimental Results

• Conclusions

3

Why Approximate Computing?

• Many real world applications tolerate inaccurate
results

– Audio, Video, Data mining, Websearch, AI

• Approximate Computing exploits this numerical
inexactness for better performance

– Accuracy vs [speed, power, area]

• How to introduce hardware approximations?

– Timing induced errors – e.g. voltage scaling

– Functional Approximations

4

Production Test and AC?

• After functional approximation standard
design flow

• Test of AC chip:

Test pattern fails chip is sorted out

Maybe chip perfectly
fine taking approx.
during test into
account?

Yield

5

Measuring Inaccuracies in AC

• Error Metrics – how different results are?

• “Difference“ depends on application

– Error-metrics quantify difference

– Several categories of error-metrics

• error-rate, error-magnitude, bit-flip error

1. Error Rate

– Total number of errors at output due to
approximation

• Expressed as % in number of inputs combinations

(5 out of 32 are errors etc)

• eg: Binary to BCD, branch prediction logic

6

Error Metrics (2)

2. Error magnitude

– Numerical difference between approximated-
output and exact-output

• Worst-case error: max among error
magnitudes

• Total error: sum of error-magnitudes

• Average error etc

– eg: Image processing

• Pixel distortion due to error-magnitude

7

Error Metrics (3)

3. Bit-flip error

– Number of bits in output with a different value
(hamming distance)

• eg: parity logic

• Error Metrics – statistical and exact flavors

– Statistical

• Uses error model, distribution (usually random
or derived from application, inputs etc)

– Exact: Guaranteed working

• No input vectors, assumptions, error models

• Formally verified

8

Test and ATPG
• Why test?

– IC fabrication not ideal. Huge number of defects

– Detect defects (faults) before shipping to customer

– Ideally every fault must be tested

• Test as SAT-problem

– Algorithm:

 foreach fault in Netlist

 Construct miter for netlist w/ and w/o fault

 Run SAT-solver

 SAT solution = ATPG pattern

– Huge volume of test data

• compaction, fault simulation, activation cone etc

9

Test for Approximate Computing

• Which fault to target in ATPG?

– Skip defects within approximation error tolerance

– Target only remaining faults

• Approximation redundant faults

– Faults that are guaranteed to have effects below
the tolerable limit of AC

– No need to generate test

• Advantages

– Improve Manufacturing Yield

– Reduce test-time

10

Example: 2-bit Approximate Adder

Functional approximation:
Cutting carry from FA to 2nd FA

Error metric:
Worst-case error

Error metric constraint:
Worst-case error: ≤ 2

HA

11

Example: 2-bit Approximate Adder

12

Example: 2-bit Approximate Adder

.

.

.

13

Example: 2-bit Approximate Adder

worst-case error as integer

.

.

.

14

Example: 2-bit Approximate Adder

.

.

.

15

Example: 2-bit Approximate Adder

worst-case error

for appr. adder w/ SA0 and SA1

at output bit sum0

.

.

.

16

Example: 2-bit Approximate Adder

SA1 fault at sum0 output is

approximation-redundant

because is always ≤ 2

 No test for this fault

needed

17

Example: 2-bit Approximate Adder

SA0 fault at sum0 output is

a non-approximation fault

because worst-case error is 3

 test for this fault

needed

18

Proposed Approximation-aware Testing

• Approach

– Use SAT-based pre-processor to remove
approximation-redundant faults

• Algorithm: Approximation Fault Pre-processor

– foreach fault in Netlist

• Construct Approximation Miter

• Run SAT-solver

• If UNSAT guaranteed to have effect below threshold

• Skip UNSAT faults from ATPG

• If fault cannot be classified, treated as non-
approximation fault

19

Approximation Miter for Test

• Golden circuit

• Faulty approximated circuit

• Error = error computation network wrt. error metric

• Classification = fault classification network

violated becomes 1, iff comparison violates error metric constraint

Golden
Netlist

Faulty
approximate

Netlist

Error
Inputs

Outputs*

Outputs

violated?
Classifi-
cation

Approximation Miter proposed in ASP-DAC‘16 and DAC‘16

20

Results (1)

[*] Worst-case error conditions, circuits taken from approximation synthesis (ICCAD’16)

21

Results (2)

manually architected approximation adders primary for image processing

22

Results (3)

[*] Worst-case error conditions, circuits taken from approximation synthesis (ICCAD’16)

23

Conclusions

• Approximation-aware Testing for Approx. Circuits

• Fault classification based on approximation error
characteristics

– Approximation-redundant fault vs

– Non-approximation fault

• Approximation-redundant faults have effects below
error threshold limits no test needed

• Easy integration into standard test flows

• Significant yield improvement potential

Arun Chandrasekharan1,+

Stephan Eggersglüß1,2,*

Daniel Große1,2

Rolf Drechsler1,2

1University of Bremen, Germany
2DFKI Bremen, Germany
+now with OneSpin Solutions, Germany
*now with Mentor, a Siemens Business, Germany

grosse@informatik.uni-bremen.de

Approximation-aware Testing for
Approximate Circuits

DR 287/29-1 & DR287/23-1 graduate school, funded by

German Excellence Initiative

