Approximation-aware Testing for Approximate Circuits

Arun Chandrasekharan^{1,+} Stephan Eggersglüß^{1,2,*} Daniel Große^{1,2} Rolf Drechsler^{1,2}

¹University of Bremen, Germany ²DFKI Bremen, Germany ⁺now with OneSpin Solutions, Germany ^{*}now with Mentor, a Siemens Business, Germany grosse@informatik.uni-bremen.de

DR 287/29-1 & DR287/23-1

graduate school, funded by German Excellence Initiative

Agenda

- Introduction
- Error Metrics
- Approximation-aware Testing for Approx. Circuits
 - Approximation Redundant Faults
 - Approximation-aware Fault Classification
- Experimental Results
- Conclusions

Why Approximate Computing?

- Many real world applications tolerate inaccurate results
 - Audio, Video, Data mining, Websearch, AI

- Approximate Computing exploits this numerical inexactness for better performance
 - Accuracy vs [speed, power, area]
- How to introduce hardware approximations?
 - Timing induced errors e.g. voltage scaling
 - Functional Approximations

Production Test and AC?

- After functional approximation standard design flow
- Test of AC chip: Test pattern fails ⇒ chip is sorted out

Maybe chip perfectly fine taking approx. during test into account?

Yield

Measuring Inaccuracies in AC

- Error Metrics how *different* results are?
- "Difference" depends on application
 - Error-metrics quantify difference
 - Several categories of error-metrics
 - error-rate, error-magnitude, bit-flip error
- 1. Error Rate
 - Total number of errors at output due to approximation
 - Expressed as % in number of inputs combinations (5 out of 32 are errors etc)
 - eg: Binary to BCD, branch prediction logic

Error Metrics (2)

- 2. Error magnitude
 - Numerical difference between approximatedoutput and exact-output
 - Worst-case error: max among error magnitudes
 - Total error: sum of error-magnitudes
 - Average error etc
 - eg: Image processing
 - Pixel distortion due to error-magnitude

Error Metrics (3)

3. Bit-flip error

- Number of bits in output with a different value (hamming distance)
 - eg: parity logic
- Error Metrics statistical and exact flavors
 - Statistical
 - Uses error model, distribution (usually random or derived from application, inputs etc)
 - Exact: Guaranteed working
 - No input vectors, assumptions, error models
 - Formally verified

Test and ATPG

- Why test?
 - IC fabrication not ideal. Huge number of *defects*
 - Detect defects (faults) before shipping to customer
 - Ideally every fault must be tested
- Test as SAT-problem
 - Algorithm:
 - foreach fault in Netlist
 - Construct miter for netlist w/ and w/o fault
 - Run SAT-solver
 - SAT solution = ATPG pattern
 - Huge volume of test data
 - compaction, fault simulation, activation cone *etc*

Test for Approximate Computing

- Which fault to target in ATPG?
 - Skip defects within approximation error tolerance
 - Target only remaining faults
- Approximation redundant faults
 - Faults that are guaranteed to have effects below the tolerable limit of AC
 - No need to generate test
- Advantages
 - Improve Manufacturing Yield
 - Reduce test-time

 c_{out} , sum $\approx a + b + c_{in}$

Functional approximation: Cutting carry from FA to 2nd FA HA

Error metric: Worst-case error

Error metric constraint:

Worst-case error: ≤ 2

			Col	it su	ım ₁ sı	$1m_0$		
$C_{in}a_1a_0b_1b_2$	⁵ 0 Co	orrect [†]	App	x‡	Appx:S	SA0*	Аррх	$::SA1 \pm$
	In	Out [†]	Out [‡]	e^{\ddagger}	Out*	e^{\star}	Out±	$_{e}\pm$
	00000	000	000	0	000	0	001	1
	00001	001	001	0	000	1	001	0
	00010	010	010	0	010	0	011	1
	00011	011	011	0	010	1	011	0
	00100	001	001	0	000	1	001	0
f1 _{SA0}	00101	010	000	2	000	2	001	1
f1sa1	00110	011	011	0	010	1	011	0
$(a_0^{h} b_0^{h} cin)$	00111	100	010	2	010	2	011	1
						$\widehat{1}$		\uparrow
(a ₁ ^ b ₁)	•							
<u> </u>		W	vorst-	cas	e erro	or		
		ſ			1 1	1 1		1011

worst-case error for appr. adder w/ SA0 and SA1 at output bit sum_0

 c_{out} , sum \approx a + b + c_{in}

a₀

b₀

c_{in}

b₁

(Correct [†]	App	x‡	Appx:8	SA0*	App	$x:SA1^{\pm}$	
In	Out [†]	Out [‡]	e^{\ddagger}	Out*	e^{\star}	Out±	e^{\pm}	
00000) 000	000	0	000	0	001	1	
00001	001	001	0	000	1	001	0	
00010	010	010	0	010	0	011	1	
00011	011	011	0	010	1	011	0	
00100) 001	001	0	000	1	001	0	
00101	010	000	2	000	2	001	1	
00110	011	011	0	010	1	011	0	
00111	100	010	2	010	2	011	1	
01000	010	010	0	010	0	011	1	
01001	011	011	0	010	1	011	0	
01010) 100	100	0	100	0	101	1	
01011	101	101	0	100	1	101	0	
01100	011	011	0	010	1	011	0	
01101	100	010	2	010	2	011	1	
01110) 101	101	0	100	1	101	0	
01111	110	100	2	100	2	101	1	
10000) 001	001	0	000	1	001	0	
10001	010	000	2	000	2	001	1	
10010	011	011	0	010	1	011	0	
10011	100	010	2	010	2	011	1	
10100	010	000	2	000	2	001	1	
10101	011	001	2	000	3	001	2	
10110) 100	010	2	010	2	011	1	
10111	101	011	2	010	3	011	2	
11000) 011	011	0	010	1	011	0	
11001	100	010	2	010	2	011	1	
11010) 101	101	0	100	1	101	0	
11011	110	100	2	100	2	101	1	
11100) 100	010	2	010	2	011	1	
11101	101	011	2	010	2	011	2	
11110) 110	100	2	100	2	101	1	
11111	111	101	2	100	3	101	2	

SA0 fault at sum₀ output is a **non-approximation fault** because worst-case error is 3

Co	orrect [†]	App	x‡	Appx:S	A0*	App	$x:SA1^{\pm}$
In	Out [†]	Out [‡]	e^{\ddagger}	Out*	e^{\star}	Out±	$_{e}\pm$
00000	000	000	0	000	0	001	1
00001	001	001	0	000	1	001	0
00010	010	010	0	010	0	011	1
00011	011	011	0	010	1	011	0
00100	001	001	0	000	1	001	0
00101	010	000	2	000	2	001	1
00110	011	011	0	010	1	011	0
00111	100	010	2	010	2	011	1
01000	010	010	0	010	0	011	1
01001	011	011	0	010	1	011	0
01010	100	100	0	100	0	101	1
01011	101	101	0	100	1	101	0
01100	011	011	0	010	1	011	0
01101	100	010	2	010	2	011	1
01110	101	101	0	100	1	101	0
01111	110	100	2	100	2	101	1
10000	001	001	0	000	1	001	0
10001	010	000	2	000	2	001	1
10010	011	011	0	010	1	011	0
10011	100	010	2	010	2	011	1
10100	010	000	2	000	2	.001	1
10101	011	001	2	000	3		2
10110	100	010	2	010	2	011	1
10111	101	011	2	010	3	1	2
11000	011	011	0	010	1	011	0
11001	100	010	2	010	2	011	1
11010	101	101	0	100	1	101	0
11011	110	100	2	100	2	101	1
11100	100	010	2	010	2	011	1
11101	101	011	2	010	2	011	2
11110	110	100	2	100	2	.101	1
11111	111	101	2	100	3		2

Proposed Approximation-aware Testing

- Approach
 - Use SAT-based pre-processor to remove approximation-redundant faults
- Algorithm: Approximation Fault Pre-processor
 - foreach fault in Netlist
 - Construct Approximation Miter
 - Run SAT-solver
 - If UNSAT guaranteed to have effect below threshold
 - Skip UNSAT faults from ATPG
 - If fault cannot be classified, treated as nonapproximation fault

Approximation Miter for Test

- Golden circuit
- Faulty approximated circuit
- Error = error computation network wrt. error metric
- Classification = fault classification network
 violated becomes 1, iff comparison violates error metric constraint

Approximation Miter proposed in ASP-DAC'16 and DAC'16

Results (1)

EPFL benchmarks				#Faults			
Circuit	#PI/#PO	#gates	$\mathrm{f}_{\mathrm{orig}}$	${\rm f}_{\rm final}^{\rm wc}{}^{\dagger}$	${ m f}^{ m wc}_{\Delta}(\%)$	sec	
Barrel shifter [*] Max [*] Alu control unit [*] Coding-cavlc [*] Lookahead XY router [*] Adder [*] Priority encoder [*] Decoder [*] Round robin [*] Sin [*]	135/128 512/130 7/26 10/11 60/30 256/129 128/8 8/256 256/129 24/25	3975 3780 178 885 370 1644 1225 571 16587 5492	8540 7468 378 1830 739 3910 2759 2338 26249 13979	6677 5783 252 1194 459 2738 1335 2175 11802 12756	21.81% 22.56% 33.33% 34.75% 62.11% 29.97% 51.61% 6.97% 55.04% 8.74%	3493s 2156s 5s 73s 12s 969s 84s 132s 43940s 7464s	

[*] Worst-case error conditions, circuits taken from approximation synthesis (ICCAD'16)

Results (2)

Architecturally approx.	adders ¹	(set:1)		#Faul	ts	time
Circuit	#PI/#PO	#gates	f_{orig}	f_{final}^{wc} †	$f^{\rm wc}_{\Delta}(\%)$	sec
ACA_II_N16_Q4 ±	32/17	225	483	180	62.73%	14s
ACA_II_N16_Q8	32/17	255	535	277	48.22%	16s
ACA_I_N16_Q4	32/17	256	530	174	67.17%	14s
ETAII_N16_Q8 Ŧ	32/17	255	535	277	48.22%	16s
ETAII_N16_Q4	32/17	225	483	180	62.73%	13s
GDA_St_N16_M4_P4 [‡]	32/17	258	575	331	42.43%	17s
GDA_St_N16_M4_P8	32/17	280	617	188	69.53%	21s
GeAr_N16_R2_P4 ^{‡‡}	32/17	255	541	160	70.43%	16s
GeAr_N16_R6_P4	32/17	263	561	286	49.02%	19s
GeAr_N16_R4_P8	32/17	261	552	161	70.83%	17s
GeAr_N16_R4_P4	32/17	255	535	277	48.22%	16s

manually architected approximation adders primary for image processing

Results (3)

Arithmetic	designs ²	(set:2)
------------	----------------------	---------

#Faults

Circuit	#PI/#PO	#gates forig	$_{\rm g}{\rm f}_{\rm final}^{ m wc}^{ m t}$	$f^{^{wc}}_{\Delta}(\%)$
Han Carlson Adder*	64/33	655 1415	5 969	31.52%
Kogge Stone Adder*	64/33	839 1789) 1475	17.55%
Brent Kung Adder*	64/33	545 1178	3 700	40.58%
Wallace Multiplier*	16/16	641 164	669	59.23%
Array Multiplier*	16/16	610 1585	5 619	60.95%
Dadda Multiplier*	16/16	641 164	652	59.40%
MAC unit1*	24/16	725 182	760	58.26%
MAC unit2*	33/48	874 2104	492	76.61%
4-Operand Adder*	64/18	614 1434	1156	19.39%

[*] Worst-case error conditions, circuits taken from approximation synthesis (ICCAD'16)

Conclusions

- Approximation-aware Testing for Approx. Circuits
- Fault classification based on approximation error characteristics
 - Approximation-redundant fault vs
 - Non-approximation fault
- Approximation-redundant faults have effects below error threshold limits \Rightarrow no test needed
- Easy integration into standard test flows
- Significant yield improvement potential

Approximation-aware Testing for Approximate Circuits

Arun Chandrasekharan^{1,+} Stephan Eggersglüß^{1,2,*} Daniel Große^{1,2} Rolf Drechsler^{1,2}

¹University of Bremen, Germany ²DFKI Bremen, Germany ⁺now with OneSpin Solutions, Germany ^{*}now with Mentor, a Siemens Business, Germany grosse@informatik.uni-bremen.de

DR 287/29-1 & DR287/23-1

graduate school, funded by German Excellence Initiative

