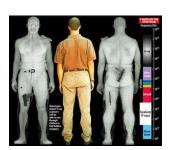
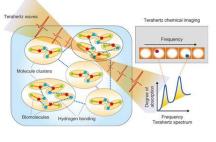
A 230-260GHz Wideband Amplifier in 65nm CMOS Based on Dual-Peak G_{max}-core

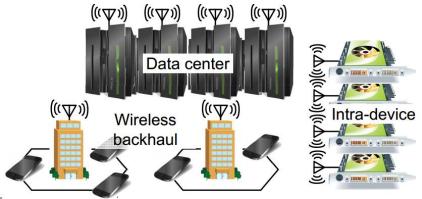
Dae-Woong Park¹, Dzuhri Radityo Utomo¹, Jong-Phil Hong², and Sang-Gug Lee¹

¹ Department of Electrical Engineering,


KAIST, South Korea ² Department of Electrical Engineering, CBNU, South Korea



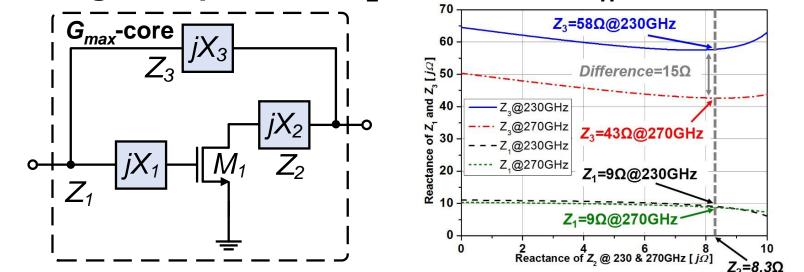
Terahertz Applications


- High data rate communication
- Bio / molecular spectroscopy
- Imaging
- Compact range radars

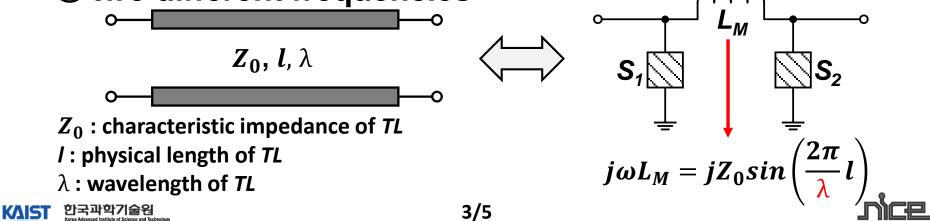
Imaging

Spectroscopy

Communication

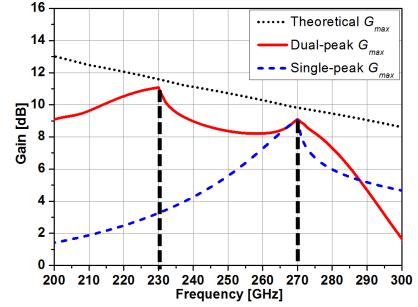

Radar

High gain and wideband sub-THz amplifier is a key block of these systems!

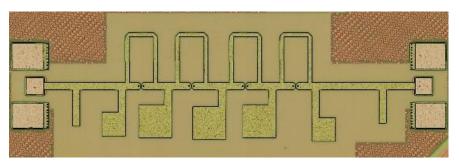


Embedding Network for *Gmax***-core**

□ Two target frequencies : f_L =230GHz and f_H =270GHz



Same physical length *TL* can show different reactance @ two different frequencies


Dual-peak G_{max}-core & Chip Photo

] Two target frequencies : f_L =230GHz and f_H =270GHz

- Power gain boosting to G_{max} @ f_L and f_H
- Pseudo gain booting @ frequency between f_L and f_H

Chip photo

- ► 65nm CMOS process
- Active area : 330x160 μm²
- ► Total area : 590x240 µm²

Performance Comparison

References	This work	JSSC 17	MTT 13	MWCL 16	EL 11	TST 15
Technology	65 nm CMOS	65 nm CMOS	40 nm CMOS	90 nm CMOS	65 nm CMOS	40 nm CMOS
f _{max} (GHz)	395	352	275	300	N/A	400
f _o (GHz)	227.5-257.2	257	213.5	205	200	197-288 (Multiband)
Тороlоду	4 CS stages	4 CS stages	9 CS stages	5 CS stages	5 Diff. Cascode	5 CS stages
Gain [dB]	12.4±1.5	7.7 <u>+</u> 1.5	9 <u>+</u> 1.5	9±1.5	6.6±1.5	14.8 <u>+</u> 1.5
Gain/stage [dB]	3.1±0.375	1.93 <u>+</u> 0.375	1±0.17	1.8 <u>+</u> 0.3	1.12±0.3	$\textbf{2.96} \pm \textbf{0.3}$
DC Power [mW]	23.8	27.6	42.3	39.1	108	-
3dB-Bandwidth [GHz]	29.7 (12.3%)	12.2 (4.7%)	13 (6%)	9.7 (4.7%)	4 (2.1%)	10.1 (<5%)
P _{sat} [dBm]	-4.94~-3.31	-3.9	-3.2	-1.6	< -10	6.1
<i>OP_{1dB}</i> [dBm]	-6.72~-5.09	-5.5	-7.2	-5.8	-	1
*MAX PAE [%]	1~1.56	1.35	0.75	-	< 0.09	-

