A Nonvolatile Flip-Flop-Enabled Cryptographic Wireless Authentication Tag with Per-Query Key Update and Power-Glitch Attack Countermeasures

Chiraag Juvekar¹, <u>Hyung-Min Lee²</u>, Joyce Kwong³,

and Anantha Chandrakasan¹

¹Massachusetts Institute of Technology ²Korea University, ³Texas Instruments

\$30 million worth fake wines were seized in 2012

In 2014, Aston Martin recalled 18,000 cars due to counterfeit brake pedals

Fake malaria drugs caused 100,000 deaths in Africa

^{4A-2} System Overview and Threat Model

Key Features

- Regulating Voltage Multiplier
- Pulse-based Telemetry
- Key Update Protocol
- Keccak Cryptographic Core
- NV-DFF Key-storage
- FeCap-based Energy Backup _ po

- Wireless power/data for compact-size tag
 - To prevent
- side-channel attack

To limit power-glitch attack

^{4A-2} Area-Optimal Energy Backup Unit

- 3.5nJ backup energy requirement
- C_{BK} (HV FeCap) has 3.4x higher energy density including regulator efficiency than C_L (LV FeCap)
 - Energy Backup Unit needs 2.2x less area compared to single output cap

^{4A-2} **Power-Glitch Countermeasures**

Power Glitch Causes:

- Reader is pulled away
- Malicious Reader

Guaranteed safe backup and key update

Backup w/ Worst-Case Glitch Event

The tag safely performs:

- NVDFF restore
- Key update
- NVDFF backup