

4A-26

Related work

i	θ			
0	45.000000000			
1	26.565051177			
2	14.036243468			
3	7.125016349			
4	3.576334375			
5	1.789910608			
6	0.895173710			
7	0.447614171			
8	0.223810500			
9	0.111905677			
10	0.055952892			
	0.027976453			
12	0.013988227			
13	0.006994114			
14	0.003497057			
15	0.001748528			

Fig. 1: Set of angle constants

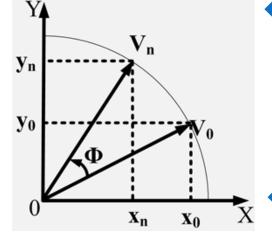


Fig. 2: A 2 dimension plane

- CORIDC:
 - Calculate several common mathematical functions.
 - The input value will be rotated by the set of predefined angle constants to return the final values.

Conventional CORIDC (Conv. CORDIC):

- Utilize all angles in set of predefined angle constant.
- Require one scale factor value for any input angle.

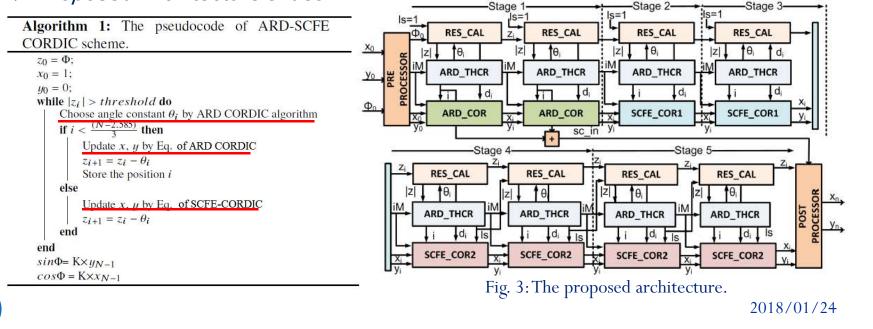
Angle Recording CORIDC (ARD CORDIC):

- Utilize only several angle of constant.
- Each input angle require one scale factor.

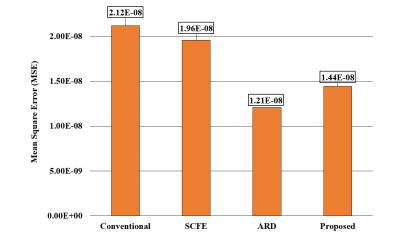
Scaling free CORIDC (SCFE-CORDIC):

- Utilize only small angle constant.
- Don't require the scale factor.

2018/01/24


4A-26

Proposed Hardware Architecture


Previous method's review:

Method	Advantages	Drawbacks
Conv. CORDIC	- Low resource architecture.	- High iteration \rightarrow high latency (N)
ARD CORDIC	- Low latency $(\frac{N}{2})$.	- High complexity.
SCFE CORDIC	- Low resource architecture.	High iteration.Low range of input angle.

Proposed Architecture's idea:

Results and Discussion

Fig. 4: The Mean Square Error (MSE) of each method.

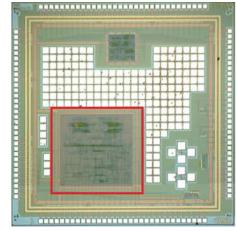


Fig. 5: The die photo of ARD-SCFE on 180 nm ROHM process.

[3] T. Y. Sung et al., IET Compt. Dig. Tech., pp. 581 - 589, 2007.

[7] K. Maharatna et al., IEEE TCAS. for Video Tech., Vol. 15, pp. 1463- 1474, 2005.

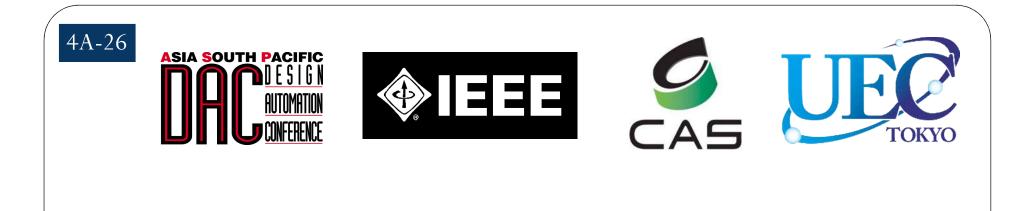
Table 1: The comparison of algorithm complexity.

Scheme	Stages	Adders	Mul.s	Execution time
Conventional	16	48	1	16 Adders.
Angle recoding	8	24	9	8 Multipliers.
Scaling-free [7]	12	48	1	24 Adders.
RRMC [8]	7	78	0	26 Adders.
SFB [9]	9	36	1	18 Adders.
SFB4C [9]	7	32	1	14 Adders.
Adaptive recoding [10]	7	32	1	14 Adders.
Proposed	5	28	1	10 Adders.

→Good trade-off between hardware complexity, execution time, and signal error.

Table 2: The comparison of ARD-SCFR arithmetic

processor with previous design.


	[3]	[7]	Proposed
Technology (nm)	250 Bi CMOS	180 TSMC	180 ROHM
Algorithm	Scaling-free	Double rotation	ARD-SCFE
Function	Sine, cosine	Sine, cosine complex multiplier	Sine, cosine sinh, cosh, multiply
Output Data	16-bit	16-bit	18-bit
	Fixed	Fixed	Fixed
Supply Voltage (V)	2.5		1.8
Frequency (MHz)	20	67.1	100
Number of gates	12,350	174,138	10,720
Power (mW)	7	22.35	12.96
Energy (nJ/cycle)	0.35	0.33	0.13
Delay time (µs)	0.60	0.21	0.10
Throughput (Gbps)	0.64	2.15	3.6

→ High throughput and low-energy.

[8] S. Aggarwal et al., IEEE Trans. VLSI Syst. Vol. 24, pp. 1588-1592, 2016.
[9] F. J. Jaime et al., IEEE TCAS I, Vol. 57, pp. 1654- 2010. 2018/01/24
[10] J. Zhang et al., IEICE ELEX., Vol. 9, pp. 765- 2012.

4

4A-26

THANK YOU

Contact information: {hongthu,xuanthuan}@vlsilab.ee.uec.ac.jp phamck@uec.ac.jp

2018/01/24