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Challenges in Modern Deep Neural Networks
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Challenges in Modern Deep Neural Networks

Revolution of Depth
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Image Credit: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Challenges in Modern Deep Neural Networks
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Image Credit: Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." arXiv preprint arXiv:1605.07678 (2016).
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Recent Advances in Design of Efficient DNNs

* Reducing the computation cost
e Quantization of weights and activation, stochastic computing, ...

(The structure of the network is intact and may not be optimal)

* Network structure simplification

* Low-rank approximation of network’s layers

* Reducing number of weights: edge pruning, brain damage, weight sharing, ...

(Results in sparse weight matrix, requires special hardware to fully utilize its potential)

 New techniques for designing the network structure

 Example: SqueezeNet, ResNet, Inception module, ...

(Almost Art! Mostly manual process)




Recent Advances in Design of Efficient DNNs

Conventional design flow: ENERGY Is missing!
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Our contributions

 New technique for DNN structure simplification based on eliminating redundant
neurons

« QOur technique won'’t require retraining the DNN and is compatible with other
prior work on DNN simplification

o Explicitly minimize energy during DNN structure simplification

« Show that considering energy-accuracy tradeoff impacts how the network is
simplified




Overview of Our Work

Elimination of neurons in a considered layer:
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Overview of Our Work

Our design flow: ENERGY is incorporated!
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Our Energy Model
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« E(M),E(D),E(S) are known for given
technology*
« M, P, A calculated from the DNN model

Activation / Poollng
/ Normalization

* Mark Horowitz. Energy table for 45nm process, Stanford VLSI Wiki.
* Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in Neural Information Processing Systems. 2015.
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Our Energy Model
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 Energy model is convenient for
Integration during design space
exploration of DNN

 Energy model is simplified
variation of TPU [ISCA17]

 More accurate model requires
knowledge of buffer sizes, MAC
array size, and DNN model size



Neuron Elimination Algorithm

Algorithm 1 P Algorithm 2

procedure FINDREPRESENTATIVEROWS(Xr x Kk , D)
p = rank(X); Eoyr = 1078 Perform SVD decomposition on X = UEV’
Do { Set Uj, to be the first p columns of U

procedure REDUCEDIMENSION(X,,x i , layer /) I:
2
3
Select p rows of X using Algo. 2 4 Perform QRD on Uy and get Uy P, = QR
5
6:

Generate simplified network N as in Fig. 3 end procedure

Record degradati d Eeur of N . .
eeoTt duetitaty fegralilion e dnt Snetey Beur O * Input: a specific layer which needs to be

p=p—1

1:
2
3
4:
5. Compute W, using Eq. 6 Permutation matrix P, identifies the p rows
6.
7
8
9

T simplified
10:  While(p # 0 and e < degradation threshold) » lteratively eliminates neurons based on QR
1. Generate accuracy vs energy tradeoff of stored configurations actorization with column pivoting*
12: end procedure e Output: new DNN structures with updated

edge weights which show a tradeoff in
energy Vs accuracy space

* Chan, Tony F. "Rank revealing QR factorizations." Linear algebra and its applications 88 (1987): 67-82.
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Results: Information about Experimental DNNSs

| LetNet5 | LeNet300100 CIFARLO CaffeNet
CS1 S5x5x1x20 S5x5x3x32 11X11x3x96
CS2 5x5x%x20x%x50 S5x5x32x%x32 S5X5x%x48 %256
CS3 - S5x5x%x32x64 3x3x256x%x384
CS4 - 3x3x192x384
CS5 - - - 3x3x192x%x256
FC1 4x4x%x50x500 784 %300 4x4x64%x10 6 X 6Xx256 x4096
FC2 500x10 300x 100 - 4096 x 4096
FC3 - 100x 10 4096 x 1000
#Edgs 2293K 266K 12.3M 724M
#Parm 431K 266K 89.4K 61M

 MNIST is a dataset of handwritten digits, contains 70000 28x28 gray-
scale images (60000 training, 10000 testing) in 10 classes.

 CIFRAR10 dataset consists of 60000 32x32 color images (50,000 training
and 10,000 testing) in 10 classes.

* ImageNet dataset consists of 1331167 256x256 color images (1281167
training and 50000 testing) in 1000 classes.



Results: Performed Experiments

* Applied our neuron elimination technigue to various fully connected
(FC) layers in each DNN and measured required memory as well
as accuracy and energy tradeoffs.

« Accuracy Is measured by running the testing images in
corresponding dataset and measuring the classification error rate.

* Energy is measured by using the discussed energy model.




Results: Comparison of Required Memory

Original After Accuracy
Params Total Params Total  %original Ratio Original After

LeNet5-FC1 13.8 Mb 13.9 Mb 1.1 Mb 1.2 Mb 8.13%  12.30X 99.10% 97.26%

LeNet5-FC2 13.8 Mb 14.0 Mb 1.7 Mb 1.9 Mb 12.67% 7.88X 99.10% 97.25%

LeNet300-100-FC1 8.5 Mb 8.5 Mb 1.6 Mb 1.6 Mb 18.85% 5.30X 98.21% 96.57%

LeNet300-100-FC2 8.5 Mb 8.5 Mb 1.5 Mb 1.5 Mb 17.64% 5.67X 98.21% 96.24%

LeNet300-100-FC3 8.5 Mb 8.5 Mb 7.6 Mb 7.6 Mb 89.40% 1.12X 98.21% 96.92%

CIFARIO-FC1 | 2.9 Mb 3.2 Mb \ 2.5 Mb 2.8 Mb 89.21% 1.12X 81.49% 79.57%
CaffeNet-FC1l 2438 MB 2447 MB | 129.1 MB  130.0 MB 52.94% 1.89X | 56.67% / 79.59%  53.72% [/ 77.67%

56.67% 1 79.59%  54.19% / 77.80%
56.67% / 719.59%  53.57% / 77.61%

CaffeNet-FC2 2438 MB 2447 MB | 1348 MB 1353 MB 55.30% 1.81X
CaffeNet-FC3 2438 MB  2447MB | 1862 MB  187.1 MB 76.37% 1.31X

* Achieved significant memory saving with negligible loss in accuracy




Results: Energy Comparison (One Image Classification)

Total |

| Computation Energy | Communication Energy | Accuracy
MAC SRAMwe?lghts SRAMgctivations DRAM
LeNet5 (Original) 10.55 uJ 2.15 uJ 49.74 nJ 27552 uJ | 288.27 uJ 99.10%
LeNet5 (After) 1.95 uJ 0.05 uJ 38.05 nJ 6.69 uJ 8.73 uJ 97.26%
Original/After 542X 41.20X 1.31X 41.20X 33.02X
LeNet300-100 (Original) 1.22 uJ 1.33 uJ 11.94 nJ 170.51 uJ 172.56 uJ 98.21%
LeNet300-100 (After) 0.05 uJ 0.05 uJ 209 nJ 6.36 uJ 6.46 uJ 96.24%
Original/After 26.81X 26.81X 571X 26.81X 26.71X
CIFAR1O (Original) 56.57 uJ 045 uJ 0.14 uJ 5724 uJ 11440 uJ 81.94%
CIFAR1O (After) 43.50 uJ 0.40 uJ 0.13 uJ 51.07 uJ 95.10 uJ 79.57%
Original/After 1.30X 1.12X 1.08X 1.12X 1.20X
CaffeNet (Original) 333 mJ 0.30 mJ 4.16uJ 39.01 mJ 42.64 mJ 56.67% 1 79.59%
CaffeNet (After) 3.13 mJ 0.13 mJ 4.08uJ 16.07 mJ 19.33 mJ 53.712% 1 77.67%
Original/After 1.06X 2.43X 1.02X 2.43X 221X

« Achieved significant energy saving with negligible loss in accuracy
* Most of the energy is consumed by DRAM




Results: Energy vs Accuracy Tradeoff in Each Layer
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« Tradeoff in accuracy and energy when eliminating neurons in different layers of
CaffeNet
 Example: for 79% accuracy we obtain higher rate of energy saving if FC1 is simplified




Results: Energy vs Accuracy Tradeoff in Each Layer
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« Tradeoff in accuracy and energy when eliminating neurons in different layers of
CaffeNet

 Example: for 73% accuracy we obtain higher rate of energy saving if FC2 is
simplified

Rate of Energy Saving



Conclusions

* Introduced a new neuron elimination technigue which explicitly considers
energy minimization as a design metric

 Showed the choice of layer to simplify in order to obtain maximum energy
saving depends on the desired accuracy
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