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Outline

• Challenges in realization of modern Deep Neural Networks 
(DNNs)

• Recent advances on efficient realization of DNNs

• Our contributions and approach

• Results and conclusions
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DNN, CNN, RNN, etc.

Challenges in Modern Deep Neural Networks
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Challenges in Modern Deep Neural Networks

Image Credit: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

More layers

Higher accuracy

ImageNet Classification top-5 error (%)

Revolution of Depth



5

Challenges in Modern Deep Neural Networks

Image Credit: Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." arXiv preprint arXiv:1605.07678 (2016).

In general, DNNs are expensive, 
in terms of memory, computation,
and energy.

Challenge when implementing 
on embedded systems and 
mobile devices.

Need to make it affordable.
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Recent Advances in Design of Efficient DNNs

• Reducing the computation cost
• Quantization of weights and activation, stochastic computing, …

(The structure of the network is intact and may not be optimal)

• Network structure simplification
• Low-rank approximation of network’s layers

• Reducing number of weights: edge pruning, brain damage, weight sharing, …

(Results in sparse weight matrix, requires special hardware to fully utilize its potential)

• New techniques for designing the network structure
• Example: SqueezeNet, ResNet, Inception module, …

(Almost Art! Mostly manual process)
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Recent Advances in Design of Efficient DNNs

Base DNN model Optimized DNN 
model

Accuracy, 
memory, # of 
computation

Optimization 
techniques

mentioned before
Evaluate

Conventional design flow: ENERGY is missing!

Update the base model
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Our contributions
• New technique for DNN structure simplification based on eliminating redundant 

neurons 

• Our technique won’t require retraining the DNN and is compatible with other 
prior work on DNN simplification

• Explicitly minimize energy during DNN structure simplification

• Show that considering energy-accuracy tradeoff impacts how the network is 
simplified
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Overview of Our Work

Formulate as 
subset selection 
problem

… … … …

𝒙𝒙(𝒏𝒏×𝟏𝟏)
𝒚𝒚(𝒎𝒎×𝟏𝟏)

𝑾𝑾(𝒎𝒎×𝒏𝒏)

𝒙𝒙(𝒑𝒑×𝟏𝟏)

𝒚𝒚(𝒎𝒎×𝟏𝟏)

𝑾𝑾𝒑𝒑 (m×p)

before

Elimination of neurons in a considered layer:

after

Our technique computes the new updated weights
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Overview of Our Work

Base DNN Model Optimized DNN 
Model

Accuracy, 
Memory, # of 
Computation, 
and ENERGY

Optimization 
techniques  
mentioned 

(including ours)
Evaluate

Our design flow:

Underlying 
Hardware Model

ENERGY is incorporated!

Update the base model
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Our Energy Model

DRAM

Weight Buffer

MAC Array

Activation / Pooling 
/ Normalization

Control

Activation 
Buffer

Data
Control Signal

𝐸𝐸 = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 + 𝐸𝐸𝑆𝑆𝐷𝐷𝑀𝑀𝑀𝑀 + 𝐸𝐸𝐷𝐷𝑅𝑅𝑆𝑆𝑅𝑅

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸 𝑀𝑀 × 𝑀𝑀

𝐸𝐸𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 = 𝐸𝐸 𝐷𝐷 × (𝑃𝑃 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼)

𝐸𝐸𝑆𝑆𝐷𝐷𝑀𝑀𝑀𝑀 = 𝐸𝐸 𝑆𝑆 × 𝑃𝑃 + 2𝐸𝐸 𝑆𝑆 × 𝐴𝐴

• 𝐸𝐸(𝑀𝑀),𝐸𝐸(𝐷𝐷),𝐸𝐸(𝑆𝑆) are known for given 
technology*

• 𝑀𝑀,𝑃𝑃,𝐴𝐴 calculated from the DNN model

* Mark Horowitz. Energy table for 45nm process, Stanford VLSI Wiki.
* Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in Neural Information Processing Systems. 2015.

On chip
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Our Energy Model

Data
Control Signal

DRAM

Weight Buffer

MAC Array

Activation / Pooling 
/ Normalization

Control

Activation 
Buffer

On chip

• Energy model is convenient for 
integration during design space 
exploration of DNN

• Energy model is simplified 
variation of TPU [ISCA17]

• More accurate model requires 
knowledge of buffer sizes, MAC 
array size, and DNN model size
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Neuron Elimination Algorithm

• Input: a specific layer which needs to be 
simplified

• Iteratively eliminates neurons based on QR 
factorization with column pivoting*

• Output: new DNN structures with updated 
edge weights which show a tradeoff in 
energy vs accuracy space

* Chan, Tony F. "Rank revealing QR factorizations." Linear algebra and its applications 88 (1987): 67-82.
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Results: Information about Experimental DNNs

• MNIST is a dataset of handwritten digits, contains 70000 28x28 gray-
scale images (60000 training, 10000 testing) in 10 classes. 

• CIFRAR10 dataset consists of 60000 32x32 color images (50,000 training 
and 10,000 testing) in 10 classes.

• ImageNet dataset consists of 1331167 256x256 color images (1281167 
training and 50000 testing) in 1000 classes.
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Results: Performed Experiments

• Applied our neuron elimination technique to various fully connected 
(FC) layers in each DNN and measured required memory as well 
as accuracy and energy tradeoffs.

• Accuracy is measured by running the testing images in 
corresponding dataset and measuring the classification error rate.

• Energy is measured by using the discussed energy model.
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Results: Comparison of Required Memory

• Achieved significant memory saving with negligible loss in accuracy 
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Results: Energy Comparison (One Image Classification)

• Achieved significant energy saving with negligible loss in accuracy 
• Most of the energy is consumed by DRAM
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Results: Energy vs Accuracy Tradeoff in Each Layer

• Tradeoff in accuracy and energy when eliminating neurons in different layers of 
CaffeNet

• Example: for 79% accuracy we obtain higher rate of energy saving if FC1 is simplified

FC1 layer FC2 layer
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Results: Energy vs Accuracy Tradeoff in Each Layer

• Tradeoff in accuracy and  energy when eliminating neurons in different layers of 
CaffeNet

• Example: for 73% accuracy we obtain higher rate of energy saving if FC2 is 
simplified

FC1 layer FC2 layer
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Conclusions

• Introduced a new neuron elimination technique which explicitly considers 
energy minimization as a design metric

• Showed the choice of layer to simplify in order to obtain maximum energy 
saving depends on the desired accuracy
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Q & A

Question?
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