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Introduction

 Deep Learning
 Convolutional neural networks (CNN) can solve 
the problems faced by existing machine learning 
algorithms in such as object recognition and natural 
language processing, etc.
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Introduction

 Deep Learning
Recently, CNN have been used to improve image 
enhancement applications in such as image super-
resolution (SR) and high dynamic range (HDR) 
imaging .
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Introduction

 Deep Learning
Especially, deconvolutional neural networks 
(DCNN) are mainly used to reconstruct target 
images in image enhancement applications.

Convolution +
Activation

Convolution +
Activation

Deconvolution + 
Activation
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Introduction

 Deep Learning
FSRCNN [1]

• Deep networks (7 CNN + 1 DCNN)
• More cost effective than SRCNN, but it’s even better.

[1] C. Dong, et al. Accelerating the super-resolution convolutional neural network. In Springer 
ECCV 2016.
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Introduction

 Problems with DCNN
1. Overlapping sum problem
2. Loop dimensions

Need to sum these overlaps up
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<General CNN Acceleration system>
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Increase latency, energy consumption and additional hardware resources ! 

<General CNN Acceleration system>
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Introduction

 Problems with DCNN
1. Overlapping sum problem
2. Loop dimensions

Deconvolution
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Background

 Loop Optimization Technique [2] 
Tile-parallel architecture
Single convolutional layer processor (CLP) method

• Resource underutilization problem

[2] C. Zhang, et al. Optimizing fpga-based accelerator design for deep convolutional neural 
networks. In ACM FPGA 2015.
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Background
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Single CLP
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Background

 Resource Partitioning [3]
Tile-parallel architecture
Multi-CLP method

• Overcoming resource underutilization problem

[3] Y. Shen , et al. Maximizing CNN accelerator efficiency through resource partitioning. In ACM
ISCA 2017.

Single CLP

Multi-CLP
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Background

 DCNN Accelerator [4]
 Tile-based architecture
 Reverse looping method

• Overhead (extra operations, loop dimension)

[4] X. Zhang, et al. A design methodology for efficient implementation of deconvolutional neural 
networks on an FPGA. In arxiv: 1705.02583.

Overhead
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Proposed Architecture – TDC method

 Main idea
 An output pixel is generated by overlapping 
regularly with neighboring blocks.

Deconvolution
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Proposed Architecture – TDC method
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 An output pixel is generated by overlapping 
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Deconvolution
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Proposed Architecture – TDC method

 Main idea
 We can find the input block that determines the 
output pixels.

Deconvolution
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Proposed Architecture – TDC method

 Main idea
Especially, each input block moves by pixels, so 
multiple output pixels can be created with the 
same input block.

Deconvolution
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Proposed Architecture – TDC method

 Main idea
Especially, each input block moves by pixels, so 
multiple output pixels can be created with the 
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Proposed Architecture – TDC method

 Main idea
Thus, the output block can be created with 
the same input block.

Deconvolution
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Proposed Architecture – TDC method

 Main idea
All pixels in the output block can be 
created simultaneously.

Deconvolution
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Proposed Architecture – TDC method

 Main idea
In conclusion, deconvolution is converted to 
convolution.

•

Deconvolution→Convolution
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Proposed Architecture – TDC method

 Main idea
Weights of newly created convolutional layer 
can be mapped to the weights of the 
deconvolutional layer using inverse coefficient 
mapping.
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Proposed Architecture – TDC method

 Advantages

1. Kernel size is reduced from to .
 Speed ↑, especially useful for kernel based CLP

2. All output pixels can be generated in parallel.
 Speed ↑, DCNN→CNN

3. Compared with [4], TDC method does not need to 
calculate every loop iteration to obtain the position 
of the input pixels.
 Speed ↑, overhead ↓
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Proposed Architecture – TDC method

 Advantages

4. In addition, if there is a DSP underutilization 
problem in the deconvolutional layer, TDC method 
solves this problem.

Resource underutilization
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Proposed Architecture – TDC method

 Evaluation of the Performance Compared with [4]





• Case 1. 

• Performance enhancement 

• Case 2. 

• Performance enhancement 
×

• Case 3. 
• Performance enhancement 



33

Proposed Architecture – Multi-CLP

 Hardware Implementation in FSRCNN
 Roofline model

•

•
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Proposed Architecture – Multi-CLP

 Hardware Implementation in FSRCNN
• CNN with hourglass-type has a serious problem of 

DSP underutilization when using single CLP 
method.

degradation
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Proposed Architecture – Multi-CLP

 Hardware implementation in FSRCNN
• We use the multi-CLP method.
• We set , for the CLP by layer characteristics.
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Experimental Environments

 Hardware Implementation Tool
 High-Level Synthesis 
 Vivado HLS 2016. 4
 Xilinx Virtex-7 485T FPGA
 Single-precision floating point

 CNN model
 FSRCNN

• 7 convolution + 1 deconvolution
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Experimental Results

 TDC Method
 Loop tiling factor (Tn, Tm) was set to (56, 9).
 Two reasons for the increase in the throughput

• Kernel size
• Resource underutilization problem is resolved

12.96 
8
7

[4]
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Experimental Results

 Hardware Implementation in FSRCNN
Single-CLP method vs Multi-CLP method

7.8 5.32 3.22 
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Experimental Results

 Hardware Implementation in FSRCNN
 Resource usage of each design

• Single CLP method used more resources.
• According to SD, the tiling factors of multi-CLP does  

not change much, so there is little difference between 
resource usage.



40

Conclusion

 Propose the TDC Method based DCNN Accelerator.
 Reduce the size of the kernel from to .
 Improves throughput and could resolve the spatial 

problem.
 Increase the parallelism of the output feature maps.
 Outperform the state-of-the-art DCNN accelerator up to 81 .

 Propose the Efficient Architecture for Hourglass-type 
CNN.
 Implement FSRCNN on Xilinx Virtex-7 FPGA.
 Resolve resource underutilization problem.
 Improve the CNN accelerator up to 7.8 using multi-CLP 

method when compared with single CLP method.


