On Coloring Rectangular and Diagonal Grid Graphs for Multiple Patterning Lithography

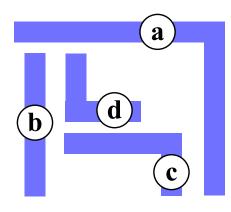
Daifeng Guo*, Hongbo Zhang^, Martin D. F. Wong*

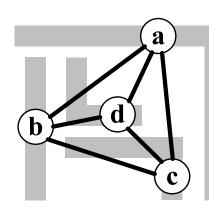
* Department of Electrical and Computer Engineering
 University of Illinois at Urbana-Champaign (UIUC), IL, USA
 ^ Facebook, USA

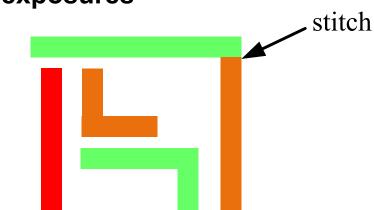
ILLINOIS

Multiple Patterning Lithography

Decompose the layout for multiple exposures

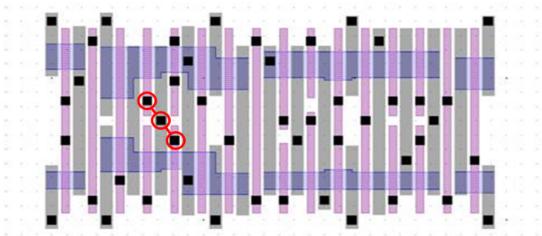






□ MPL for contact/via layer

- □ Very dense
- Cannot add stitch
- Regular distributed
- Conflicts are local



How does the regularity help us?

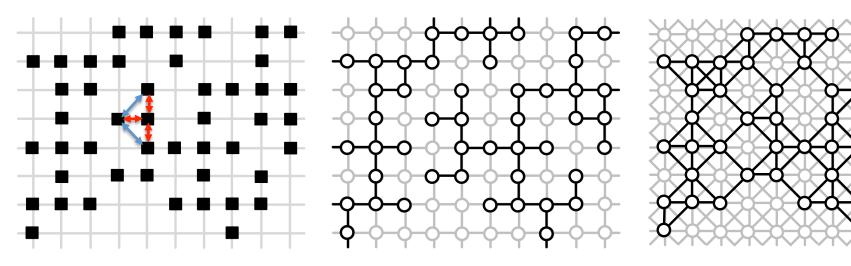
□ The conflict graph of vias is special!

Rectangular grid graph (RGG):

An induced subgraph of a rectangular grid

Diagonal grid graph (DGG):

An induced subgraph of a diagonal grid



Coloring Grid Graphs: A complete analysis

Rectangular grid graph:

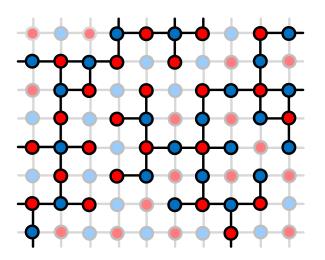
□ 2-colorable? Always. Easy to prove by even cycles.

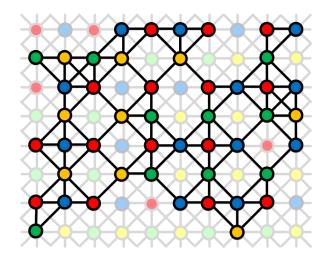
Diagonal grid graph:

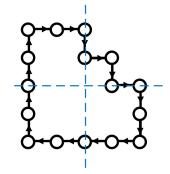
□ 2-colorable? Find the odd cycle!

□ 3-colorable?

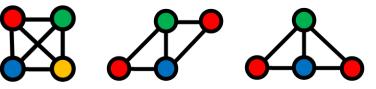
□ 4-colorable? Always!







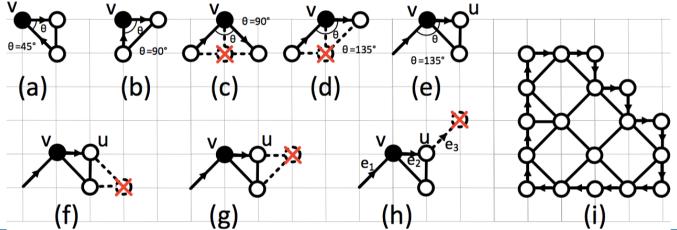
- Necessary conditions
 No K4.
- Sufficient conditions

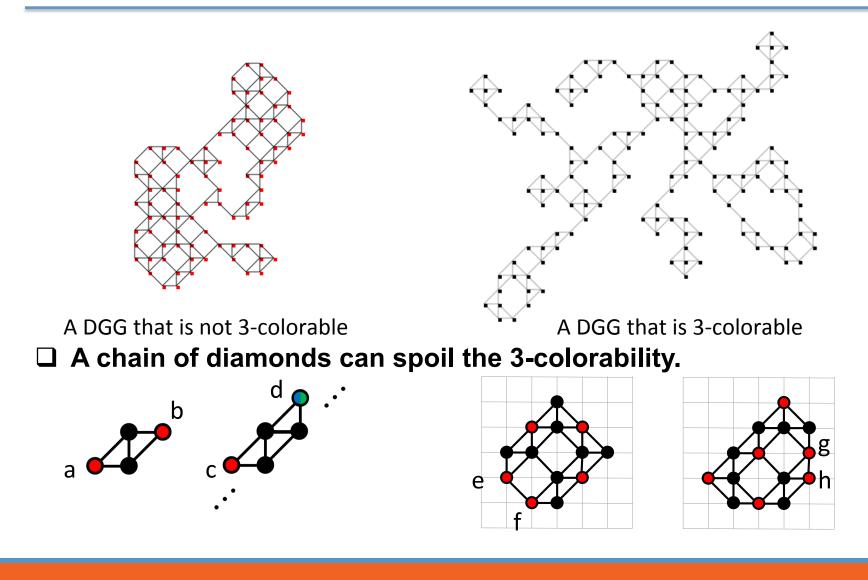


- Two diamond examples
- □ Planar graph free of 4-, 5-, 6-, 7-cycle is 3 colorable.
- Steinberg conjecture: planar graph free of 4- or 5-cycle is 3 colorable. Proved false by Cohen-Addad et al. in 2016.

K4

- □ DGG w/ degree < 4 is 3-colorable by Brooks' theorem.
- □ DGG free of "diamond" is 3-colorable.





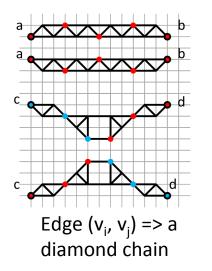
Can we embed any planar graph into a DGG and preserves its coloring by using diamond chains? If so, the problem is NP-Hard.

□ To construct a desired DGG embedding

Vertex degree unbounded vs. Vertex degree bounded

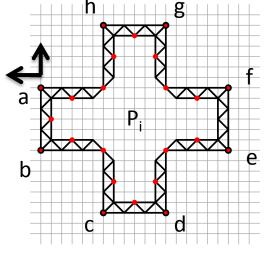
□ Any edges vs. Rectilinear diamond chains

□ The embedding has to be polynomial



ECE ILLINOIS

At most 4 diamond chains are connected

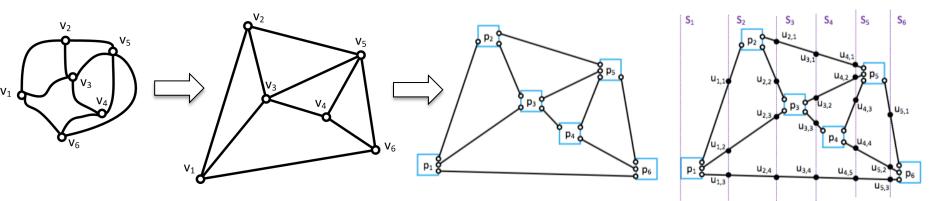


Vertex $v_i => a$ diamond chain (loop) P_i

Can we embed any planar graph into a DGG and preserves its coloring by using diamond chains? If so, the problem is NP-Hard.

□ To construct a desired DGG embedding

- □ A linear embedding
- Vertex transformation
- □ Edge transformation

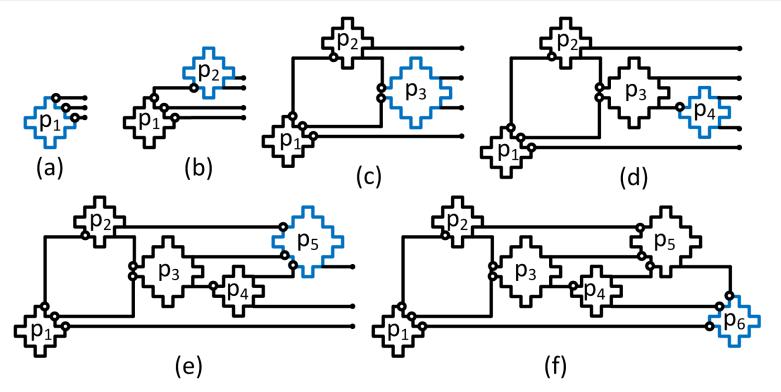


Any planar graph

A linear embedding by Fary's theorem

Vertices are replaced by diamond chains (loops)

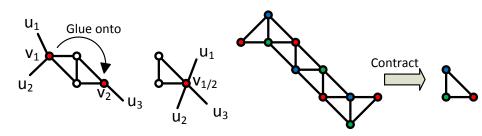
Construct a DGG embedding



- Can we use diamond chains as edges to embed any planar graph into a DGG preserving coloring? Yes!
- We prove that the construction is polynomial.
 => 3-coloring DGG is NP-complete.

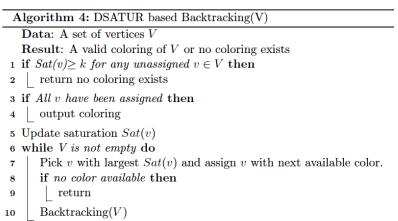
What can we learn from the proof?

- □ Can we still determine 3-colorability of DGG efficiently?
- An optimal algorithm potentially has to explore all color enumerations.
 - Returns early in 3-colorable graph and has to exhaust the solution space when the graph is not 3-colorable.
- Sparse DGG is easy to color; Difficult to color DGG has lots of diamonds.



An exact algorithm

- Diamond contractions
- Saturation based backtracking
 - Saturation of v is # of distinct colors of its neighbors.



LINOIS

10

Results

Experimental results of 3-coloring DGG

Generate randomly 1000 NxN grids with a certain density.

□ Our algorithm can solve 3-coloring for 400x400 grid graphs.

Density = 50%		Our algorithm			UTD			
# of Grids	Grid Size	# of colorable	# of not colorable	Avg. CPU (s)	# of colorable	# of not colorable	Accuracy* %	Avg. CPU (s)
1000	60x60	995	5	0.99	715	285	72.0	1.16
1000	80x80	991	9	0.99	559	441	56.8	1.53
1000	100x100	983	17	1.65	362	621	37.9	1.90
1000	200x200	910	90	23.28	8	992	0.9	6.81
1000	300x300	780	220	118.46	0	1000	0	16.66
1000	400x400	735	265	383.03	0	1000	0	30.86

LLINOIS

11

UTD: Yu, Bei, et al. "Layout decomposition for triple patterning lithography." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 34.3 (2015): 433-446.

* Accuracy is the percentage of correctly colored cases over all colorable cases.

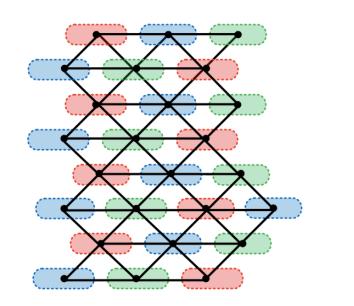
DSA-MP hybrid lithography

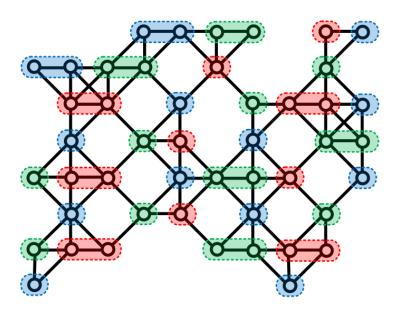
DSA and Double patterning

- Group-2-coloring DGG is NP-Hard.
- □ Proved by reduction from planar 3SAT problem.

□ DSA and Triple patterning

Group-3-coloring DGG is guaranteed.





Summary

□ Theoretical results

	2-colorability	3-colorability	4-colorability
RGG	YES	YES	YES
DGG w/ small degree	Polynomial	YES	YES
DGG w/o diamond	Polynomial	YES	YES
DGG	Polynomial	NP-complete	YES

	g-2-colorability	g-3-colorability	
RGG	YES	YES	
DGG	NP-complete	YES	

THANK YOU!

ECE ILLINOIS

ILLINOIS 14