On Coloring Rectangular and Diagonal Grid Graphs for Multiple Patterning Lithography

Daifeng Guo*, Hongbo Zhang^, Martin D. F. Wong*

* Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign (UIUC), IL, USA ${ }^{\wedge}$ Facebook, USA

Multiple Patterning Lithography

\square Decompose the layout for multiple exposures

- MPL for contact/via layer
\square Very dense
\square Cannot add stitch
\square Regular distributed
\square Conflicts are local

How does the regularity help us?
\square The conflict graph of vias is special!
\square Rectangular grid graph (RGG):
An induced subgraph of a rectangular grid
\square Diagonal grid graph (DGG):
An induced subgraph of a diagonal grid

Coloring Grid Graphs: A complete analysis

\square Rectangular grid graph:
\square 2-colorable? Always. Easy to prove by even cycles.
\square Diagonal grid graph:
2-colorable? Find the odd cycle!
\square 3-colorable?
4-colorable? Always!

3-coloring Diagonal Grid Graphs

\square Necessary conditions

- No K4.
\square Sufficient conditions

K4

Two diamond examples
\square Planar graph free of 4-, 5-, 6-, 7-cycle is 3 colorable.
\square Steinberg conjecture: planar graph free of 4 - or 5 -cycle is 3 colorable. Proved false by Cohen-Addad et al. in 2016.
\square DGG w/ degree <4 is 3-colorable by Brooks' theorem.
\square DGG free of "diamond" is 3 -colorable.

(a)

(c)

(d)

(e)

(f)
(b)

(g)

(h)

(i)

3-coloring Diagonal Grid Graphs

A DGG that is not 3-colorable

\square A chain of diamonds can spoil the 3-colorability.

3-coloring Diagonal Grid Graphs

Can we embed any planar graph into a DGG and preserves its coloring by using diamond chains? If so, the problem is NP-Hard.
\square To construct a desired DGG embedding
\square Vertex degree unbounded vs. Vertex degree bounded
\square Any edges vs. Rectilinear diamond chains
\square The embedding has to be polynomial

Edge $\left(v_{i}, v_{j}\right)=>a$ diamond chain

At most 4 diamond chains are connected

Vertex $\mathrm{v}_{\mathrm{i}}=>$ a diamond chain (loop) P_{i}

3-coloring Diagonal Grid Graphs

\square Can we embed any planar graph into a DGG and preserves its coloring by using diamond chains? If so, the problem is NP-Hard.
\square To construct a desired DGG embedding
\square A linear embedding

- Vertex transformation
- Edge transformation

Any planar graph
A linear embedding by Fary's theorem

Vertices are replaced by diamond chains (loops)

Construct a DGG embedding

Can we use diamond chains as edges to embed any planar graph into a DGG preserving coloring?
Yes!
\square We prove that the construction is polynomial. => 3-coloring DGG is NP-complete.

What can we learn from the proof?

Can we still determine 3-colorability of DGG efficiently?
\square An optimal algorithm potentially has to explore all color enumerations.
\square Returns early in 3-colorable graph and has to exhaust the solution space when the graph is not 3-colorable.
\square Sparse DGG is easy to color; Difficult to color DGG has lots of diamonds.

- An exact algorithm
\square Diamond contractions
Backtracking (V)
- Saturation based backtracking
- Saturation of v is \# of distinct colors of its neighbors.

Results

- Experimental results of 3-coloring DGG
\square Generate randomly 1000 NxN grids with a certain density.
\square Our algorithm can solve 3-coloring for 400×400 grid graphs.

| Density $=50 \%$ | | Our algorithm | | | | UTD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# of
 Grids | Grid Size | \# of
 colorable | \# of not
 colorable | Avg. CPU
 (s) | \# of
 colorable | \# of not
 colorable | Accuracy*
 $\%$ | Avg. CPU
 (s) |
| 1000 | 60×60 | 995 | 5 | 0.99 | 715 | 285 | 72.0 | 1.16 |
| 1000 | 80×80 | 991 | 9 | 0.99 | 559 | 441 | 56.8 | 1.53 |
| 1000 | 100×100 | 983 | 17 | 1.65 | 362 | 621 | 37.9 | 1.90 |
| 1000 | 200×200 | 910 | 90 | 23.28 | 8 | 992 | 0.9 | 6.81 |
| 1000 | 300×300 | 780 | 220 | 118.46 | 0 | 1000 | 0 | 16.66 |
| 1000 | 400×400 | 735 | 265 | 383.03 | 0 | 1000 | 0 | 30.86 |

UTD: Yu, Bei, et al. "Layout decomposition for triple patterning lithography." IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 34.3 (2015): 433-446.

* Accuracy is the percentage of correctly colored cases over all colorable cases.

DSA-MP hybrid lithography

D DSA and Double patterning
\square Group-2-coloring DGG is NP-Hard.
\square Proved by reduction from planar 3SAT problem.
\square DSA and Triple patterning
\square Group-3-coloring DGG is guaranteed.

Summary

Theoretical results

	2-colorability	3-colorability	4-colorability
RGG	YES	YES	YES
DGG w/ small degree	Polynomial	YES	YES
DGG w/o diamond	Polynomial	YES	YES
DGG	Polynomial	NP-complete	YES

	g-2-colorability	g-3-colorability
RGG	YES	YES
DGG	NP-complete	YES

THANK YOU!

