

Lifetime-aware Design Methodology for Dynamic Partially Reconfigurable Systems

Presented by: Siva Satyendra Sahoo

Siva Satyendra Sahoo, Dr. Bharadwaj VeeravalliDr. Tuan D.A. Nguyen , Dr. Akash KumarDepartment of Electrical and Computer Engineering,
National University of Singapore
satyendra@u.nus.edu, elebv@nus.edu.sgDr. Tuan D.A. Nguyen , Dr. Akash KumarCenter for Advancing Electronics Design,
Technische Universitat, Dresden
tuan_duy_anh.nguyen1,akash.kumar@tu-dresden.de

- > Motivation
- > Dynamic Partial Reconfiguration (DPR):
 - Background
 - Features
 - Aging mitigation
- System model
- System Design methodology
- Experiment and Results
- Conclusion

> Motivation

Dynamic Partial Reconfiguration:

- Background
- Features
- Aging mitigation
- > System model
- System Design methodology
- **Experiment and Results**
- Conclusion

Increasing fault-rates

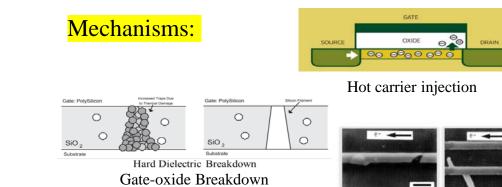
Insufficient

voltage scaling

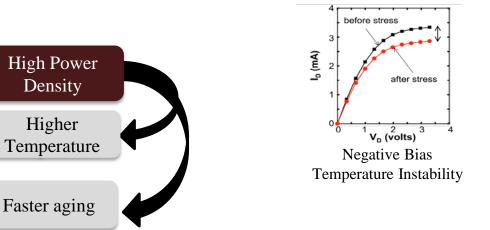
Increased

Fault Rate

Transistor

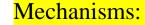

Scaling

Manufacturing


defects

Increased

Variability

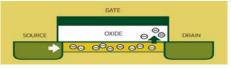

Void (open circuit) and hillock (short circuit) Electromigration

J. Keane and C. H. Kim, "An odometer for CPUs," in IEEE Spectrum, vol. 48, no. 5, pp. 28-33, May 2011.

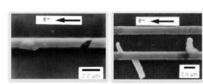
J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers, "The impact of technology scaling on lifetime reliability," Dependable Systems and Networks, 2004 International Conference on, 2004, pp. 177-186.

Increasing fault-rates

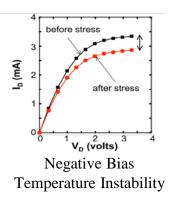
 \cap

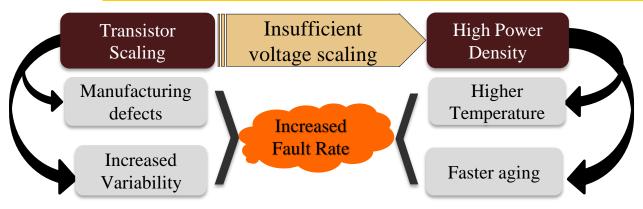

0

Hard Dielectric Breakdown Gate-oxide Breakdown


0

0


0


Hot carrier injection

Void (open circuit) and hillock (short circuit) Electromigration

Reduced System Lifetime

J. Keane and C. H. Kim, "An odometer for CPUs," in IEEE Spectrum, vol. 48, no. 5, pp. 28-33, May 2011.

J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers, "The impact of technology scaling on lifetime reliability," Dependable Systems and Networks, 2004 International Conference on, 2004, pp. 177-186.

☆ Mission failures

☆Reduced safety in critical systems

Power plants, transportation, medical etc.

Meeting increasing computation demands:

- Parallelism
- Custom Computing
 - Hardware Accelerators

Meeting increasing computation demands:

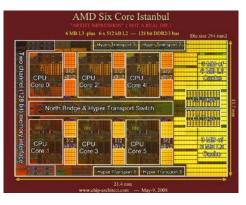
- Parallelism
- Custom Computing
 - Hardware Accelerators

Finite computation resources !!

** Time-sharing* of computing resources:

• Cost-efficient *parallel* systems

Meeting increasing computation demands:

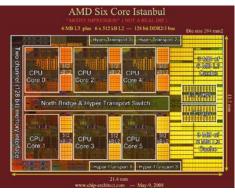

- Parallelism
- Custom Computing
 - Hardware Accelerators

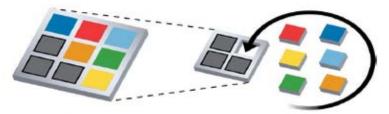
Finite computation resources !!

☆ Time-sharing of computing resources:

- Cost-efficient *parallel* systems
- Multi-processor and/or Multi-core SoCs:
 - Multiple applications sharing a number of *instruction-set processor pipeline*

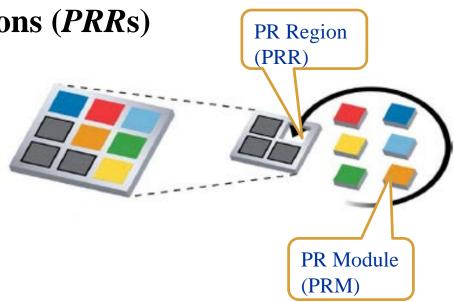
Meeting increasing computation demands:


- Parallelism
- Custom Computing
 - Hardware Accelerators


Finite computation resources !!

☆ Time-sharing of computing resources:

- Cost-efficient *parallel* systems
- Multi-processor and/or Multi-core SoCs:
 - Multiple applications sharing a number of *instruction-set processor pipeline*
- FPGAs:
 - Multiple hardware accelerators sharing *reconfigurable hardware*
 - Parallel + "Custom"



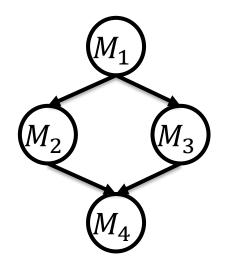
Dynamic Partial Reconfiguration (DPR)

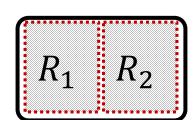
☆ Partially Reconfigurable Modules (PRMs)

☆ <u>Partially Reconfigurable Regions</u> (PRRs)

Dynamic Partial Reconfiguration (DPR)☆ Partially Reconfigurable Modules (PRMs) ☆ Partially Reconfigurable Regions (PRRs) **PR** Region (PRR) R_1 R_2 M_3 **PR** Module (PRM) Reconfig Compute R_1 M_1 M_2 R_2 M_3 M_4 **Execution Trace**

> Motivation


> Dynamic Partial Reconfiguration:

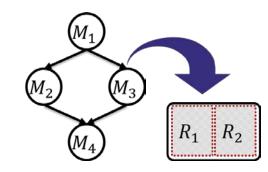

Background

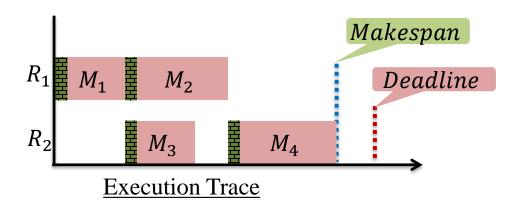
Features

- Aging mitigation
- > System model
- System Design methodology
- **Experiment and Results**
- > Conclusion

PRM-PRR compatibility

PRRs →	<i>R</i> ₁	R_2
PRMs 🗸		
<i>M</i> ₁	>	<
<i>M</i> ₂	>	×
<i>M</i> ₃	×	~
M_4	>	>

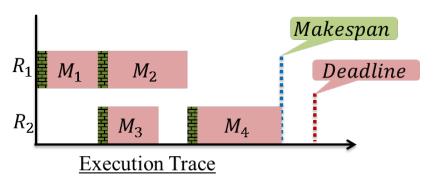

PRM-PRR Compatibility

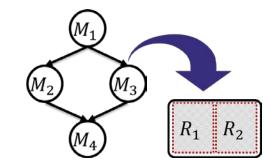

Affects:

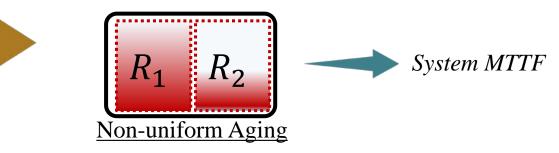
- PRRs' size
- #PRRs (*available* parallelism)
- Bitstreams *storage*

Scheduling PRMs on PRRs

- - Latency (*Timing* Reliability)

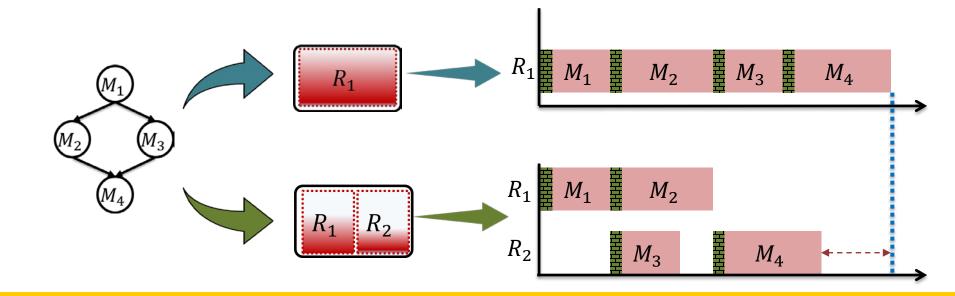





Scheduling PRMs on PRRs

Deadlines

- Latency (Timing Reliability)
- - System MTTF (Lifetime Reliability)



System-level Spatial Redundancy

☆ Number of available PRRs

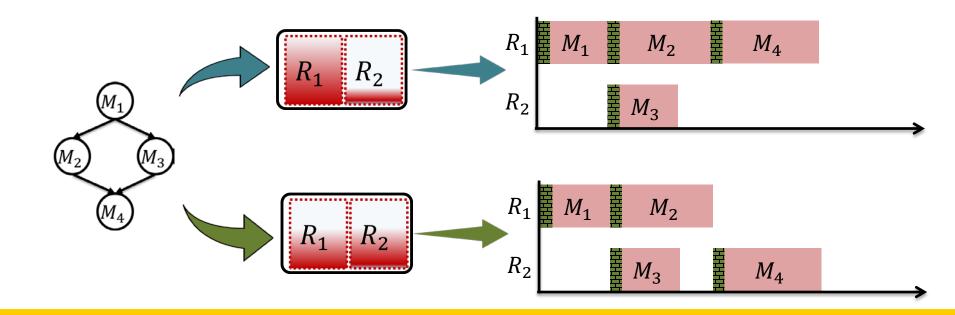
- Increased available *parallelism*
- *Net* aging reduced

DPR and System Lifetime

☆ Scheduling : Deadlines and Aging

System-level Spatial Redundancy

Tools to improve the system MTTF

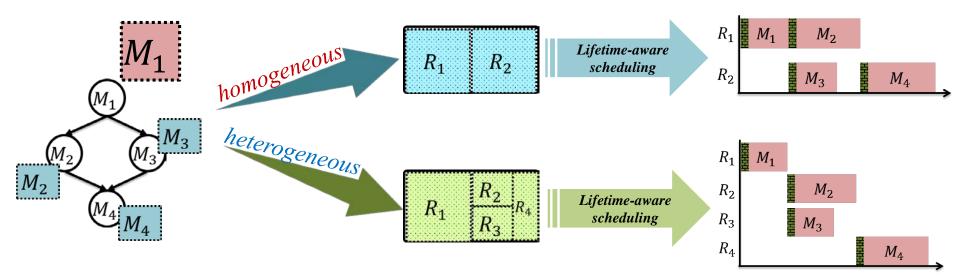

> Motivation

> Dynamic Partial Reconfiguration:

- Background
- Features
- Aging mitigation
- System model
- System Design methodology
- **Experiment and Results**
- > Conclusion

System MTTF-aware Scheduling

- ☆ Aim: Reduce aging of each PRR
- ☆ Constraints:
 - Execution latency



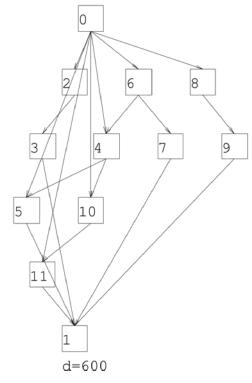
System MTTF-aware system_

partitioning

☆ Homogeneous v/s Heterogeneous PRRs Effects:

- Maximum #PRRs
- Aging of each PRR

- > Motivation
- > Dynamic Partial Reconfiguration:
 - Background
 - Features
 - Aging mitigation

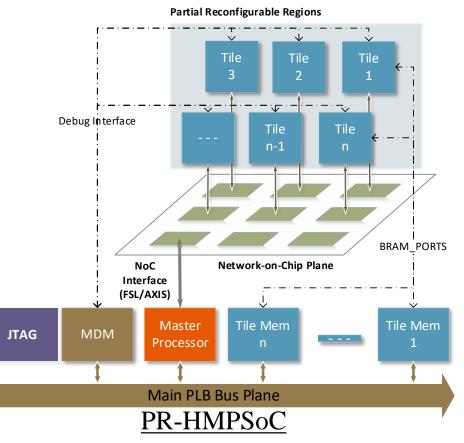

System model

- System Design methodology
- Experiment and Results
- > Conclusion

System model: *Application*

☆ Task-graph

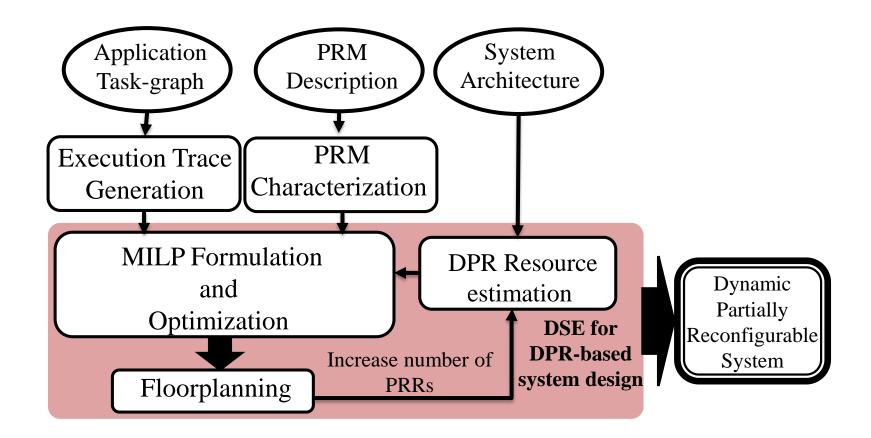
☆ Parameters for problem formulation

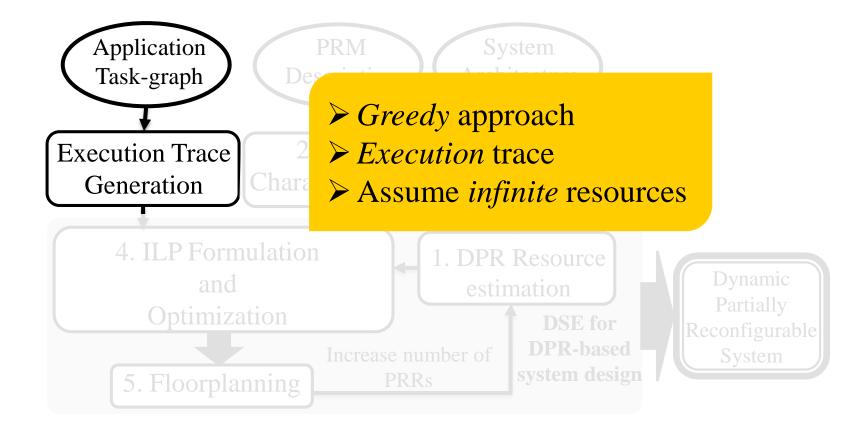

Application Task-graph

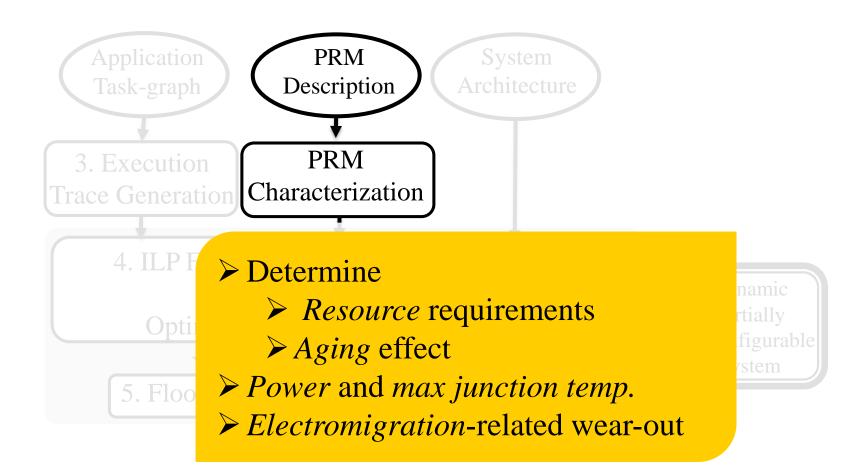
Parameter	Description		
TaskID	Serial number of task		
TaskType	Type of PRM used		
StartT	Start time of task		
ExecT	Expected execution time		
EndT	End time of task		
TaskCLBs	CLBs used for PRM implementation		
TaskBRAMs	BRAMs used for PRM implementation		
TaskDSPs	DSPs used for PRM implementation		
TaskMTTF	Expected MTTF of the task PRM		
TaskD	Any soft/hard deadline of the task		

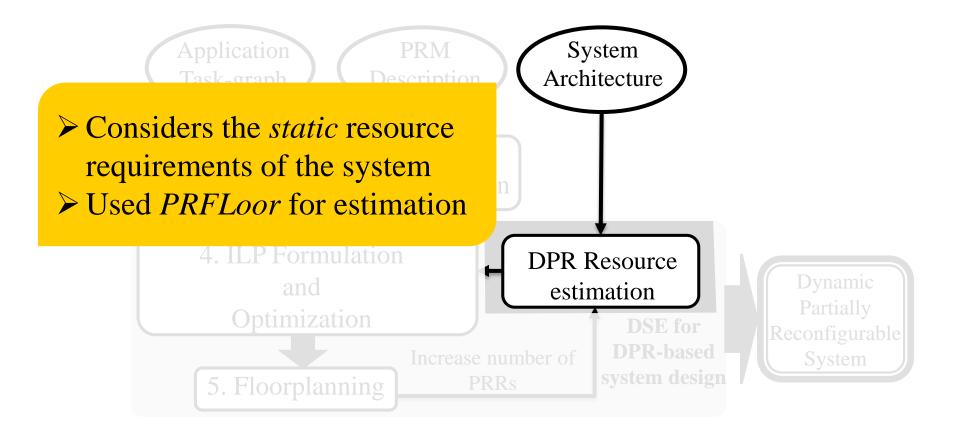
Task-level parameters

PR-HMPSoC : PRRs and Static components NoC-based system

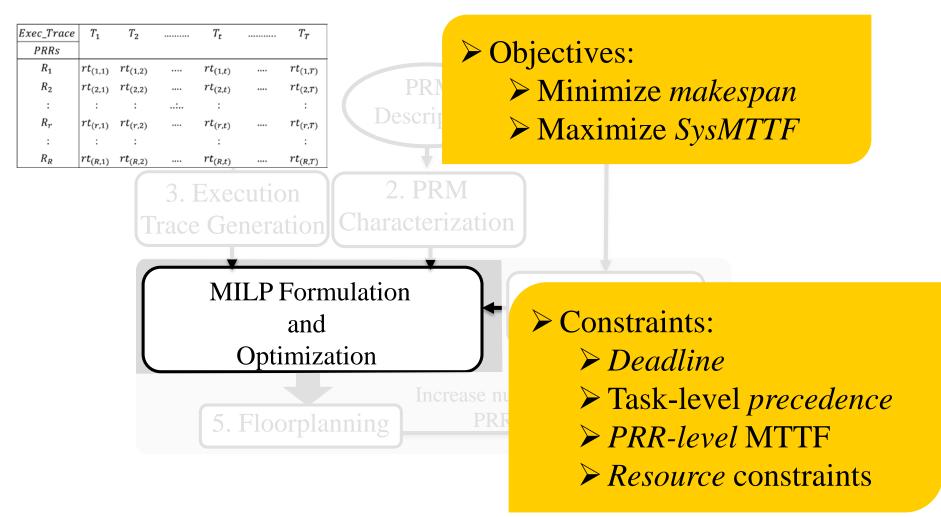

Parameter	Description	
prrID _r	Serial number of PRR	
prrCLBs _r	CLBs present in the PRR	
prrBRAMs _r	BRAMs present in the PRR	
prrDSPs _r	DSPs present in the PRR	
prrMTTF _r	Estimated MTTF of the PRR	
prrPRMs _r	List of PRMs supported by the PRR	
prrExTrace _r	Schedule of task execution on the PRR	

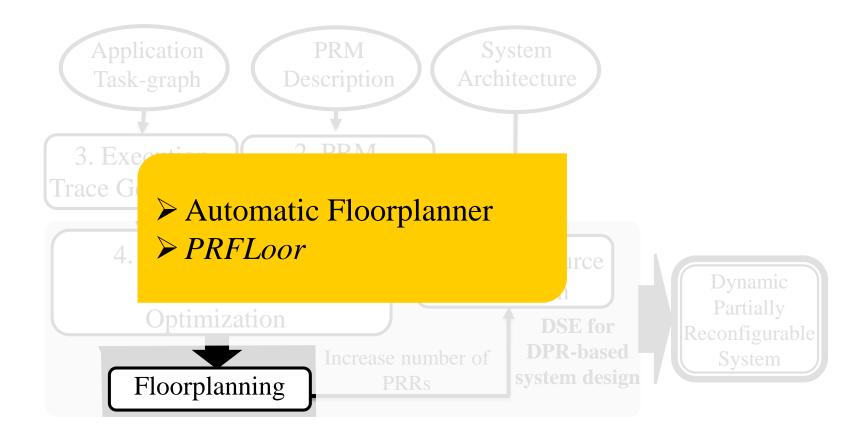

PRR parameters

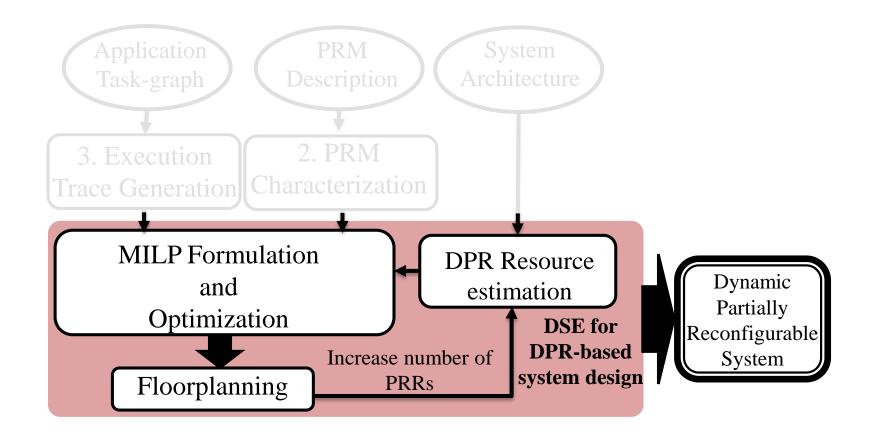

T. D. A. Nguyen and A. Kumar. PR-HMPSoC: A versatile partially reconfigurable heterogeneous Multiprocessor System-on-Chip for dynamic FPGA-based embedded systems. In *Proceedings of FPL*, 2014


$$\overset{(\text{Xiang2010})}{\overset{(\text{Xiang$$

- Motivation
- > Dynamic Partial Reconfiguration:
 - Background
 - Features
 - Aging mitigation
- > System model
- System Design methodology
- Experiment and Results
- > Conclusion







T. D. Nguyen and A. Kumar. PRFloor: An Automatic Floorplanner for Partially Reconfigurable FPGA Systems. In *Proceedings of FPGA*, 2016.

- Motivation
- > Dynamic Partial Reconfiguration:
 - Background
 - Features
 - Aging mitigation
- > System model
- System Design methodology
- Experiment and Results
- Conclusion

Experiments and Results

Experiment Setup :

- Two CPUs: Intel Xeon E5-2609 v2 @ 2.50GHz (quad-core), 32 GB of memory
- Ubuntu 14.04 LTS 64-bit
- Virtex-6 XC6VLX240T
- *Gurobi* Solver for finding MILP solution
- Task-graphs generated using TGFF

Experiments and Results

☆ Experiment Setup :

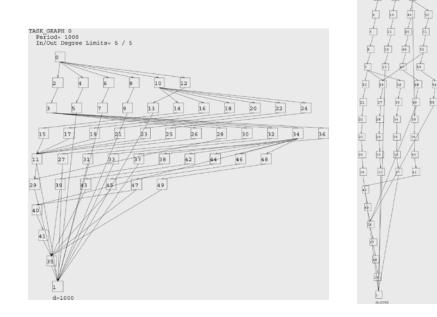
- **IP Pool:**
 - 50 real-world hardware accelerators
 - Synthesized using Xilinx Vivado Suite (ver 16.2)

PRM	LUT	BRAM	DSP	Source
DFDIV	7309	1	24	CHStone
DFMUL	4051	1	16	CHStone
Log2	8212	0	0	EPFL
ADPCM	6222	6	126	OpenCores
FFT1024	19796	18	52	OpenCores
SHA	3069	20	0	OpenCores
JPEG	6581	11	10	OpenCores
Video Stream Scaler	524	2	11	Xilinx
Video Test Pattern	2543	3	12	Xilinx
Microblaze (Max Area)	5539	5	6	Xilinx

Some notable PRMs used in experiments

Xilinx. 2017. Intellectual Property. www.xilinx.com/products/intellectualproperty.html. (2017).

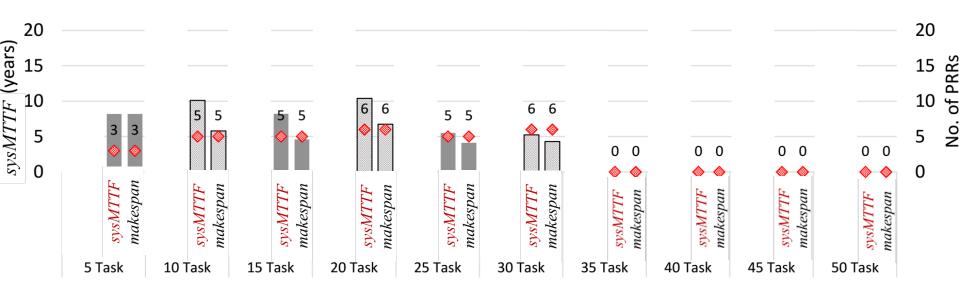
EPFL. 2017. Combinational Benchmark Suite. lsi.epich/benchmarks. (201


OpenCores. 2017. www.opencores.org. (2017)

Experiment Setup : Optimization modes :

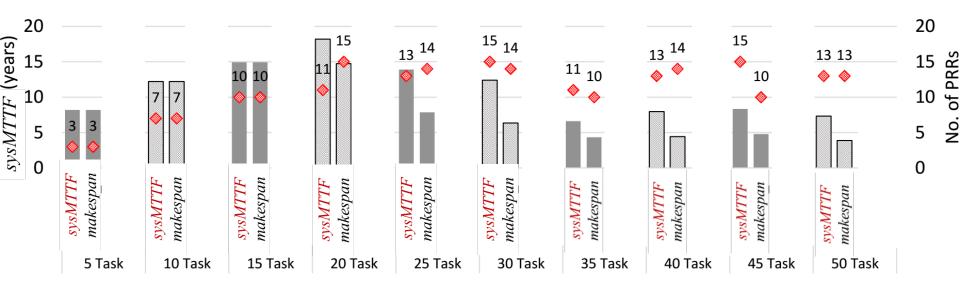
- homogeneous / heterogeneous
- Minimize makespan / Maximize system MTTF

Task-graph types :


Parallelism: *Fat* / *Slim*

ADFH 0 Jod= 2000 Frances Limits= 5 / 5

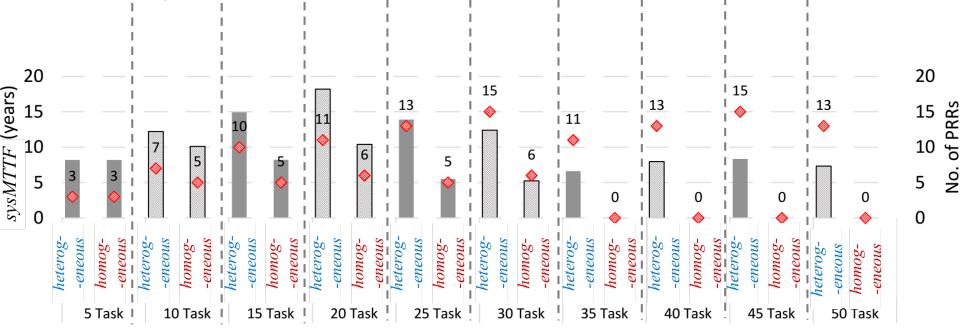
☆ Results: Fat graphs


System MTTF-aware scheduling : homogeneous PRRs

sysMTTF: Maximize system MTTF with deadline constraints *makespan:* Minimize makespan with deadline constraints

☆ Results: Fat graphs

> System MTTF-aware scheduling : *heterogeneous* PRRs



sysMTTF: Maximize system MTTF with deadline constraints *makespan:* Minimize makespan with deadline constraints

Results: Fat graphs

System MTTF-aware system partitioning: *homogeneous* v/s

heterogeneous

- Maximize system MTTF with deadline constraints using *homogeneous* PRRs
- heterog--eneous

homog-

-eneous

- Maximize system MTTF with deadline
- constraints using *heterogeneous* PRRs

☆ Results: Summary

Scenarios	T=5	T=10	T = 15	T=20	T=25	T=30	T = 35	T=40	T = 45	T=50
Fat, Large	0.00	0.21	0.82	0.75	1.52	1.37	6.62	7.96	8.33	7.33
Slim, Large	0.00	0.00	1.24	1.36	1.42	1.95	9.57	1.76	13.16	1.13

SysMTTF Improvements of Heterogeneous vs. Homogeneous Systems

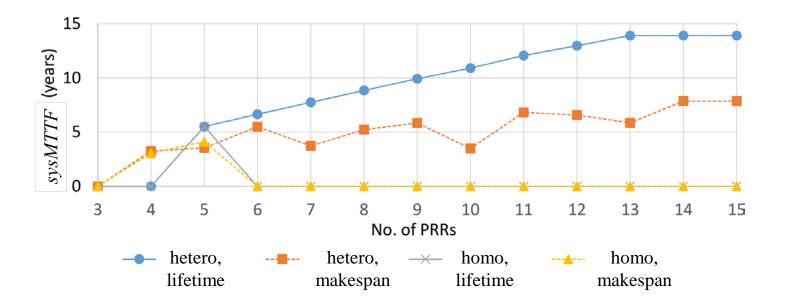
<u>sysMTTF_{hetero} – sysMTTF_{homo} sysMTTF_{homo}</u>

☆ Results: Summary

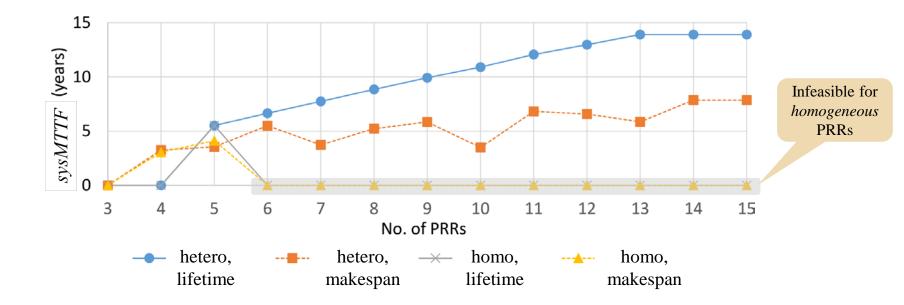
Scenarios	T=5	T=10	T = 15	T=20	T=25	T=30	T=35	T=40	T = 45	T=50
Fat, Large	0.00	0.21	0.82	0.75	1.52	1.37	6.62	7.96	8.33	7.33
Slim, Large	0.00	0.00	1.24	1.36	1.42	1.95	9.57	1.76	13.16	1.13
Fat, Small	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.06	0.06	0.00
Slim, Small	0.00	0.00	0.00	0.00	0.05	0.11	0.00	0.00	0.08	0.00

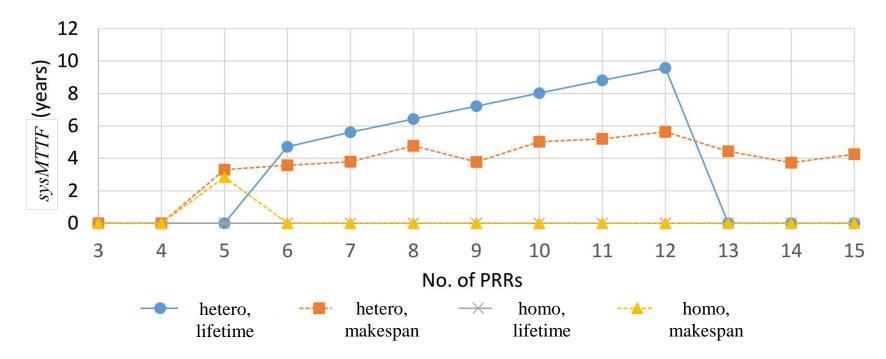
SysMTTF Improvements of Heterogeneous vs. Homogeneous Systems

 $\frac{sysMTTF_{hetero} - sysMTTF_{homo}}{sysMTTF_{homo}}$

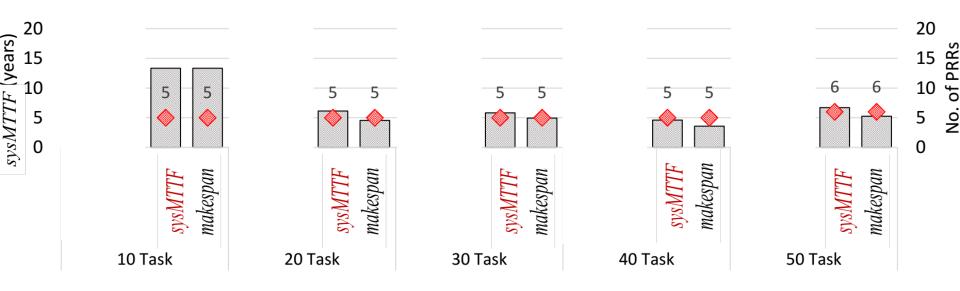

Conclusion

- A design methodology for lifetime-aware DPR-based systems was proposed
 - Scheduling with *aging-estimation*
 - Integration of *resource constraints* into scheduler
- Investigated *homogeneous* v/s *heterogeneous* PRRs
- Investigate trade-off between *aging-related* and *externally-induced* permanent faults (*future work*)
- Use other *global* optimization methods (*future work*)

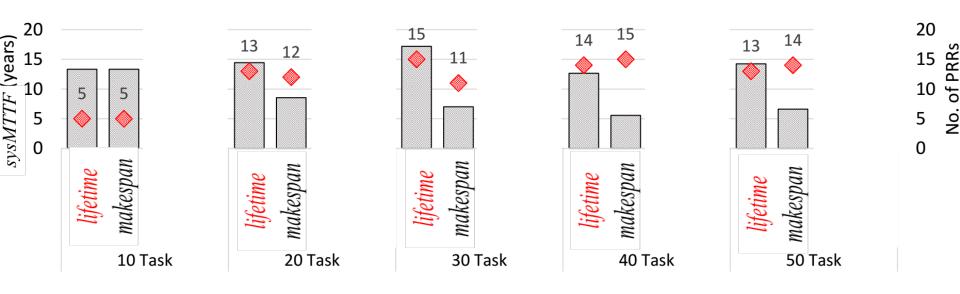



Results: Variation of System MTTF with #PRRs in a typical application with 25 tasks

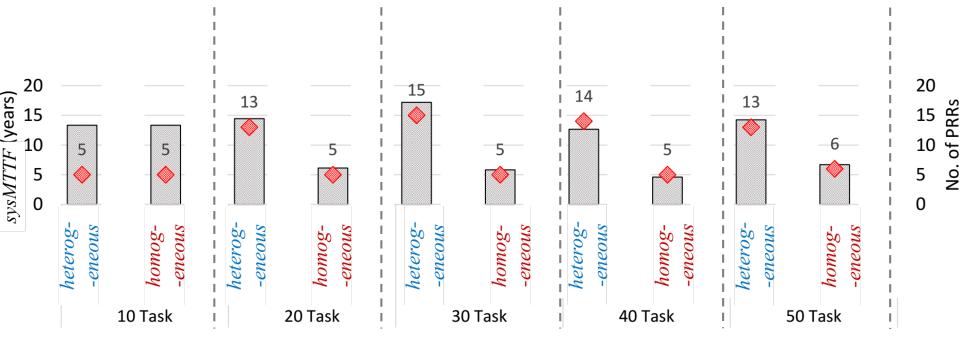
Results: Variation of System MTTF with #PRRs in a typical application with 25 tasks



☆ Results: Slim graphs


☆ Results: Slim graphs

System MTTF-aware scheduling : *homogeneous* PRRs


☆ Results: Slim graphs

System MTTF-aware scheduling : *heterogeneous* PRRs

☆ Results: Slim graphs

System MTTF-aware system partitioning: homogeneous v/s heterogeneous

