MemFlow: Memory-Driven Data Scheduling with Datapath Co-design in Accelerators for Largescale Applications

Jade Nie Sharad Malik

This work is sponsored in part by SONIC and C-FAR, funded centers of STARnet, a Semiconductor Research Corporation (SRC) program sponsored by MARCO and DARPA

Demands of large-scale computation

Eigenface

AlexNet	240MB
VGG16	552MB
GoogLeNet	28MB
SqueezeNet	4.8MB

Feature size = 500 x 500 = 250,000 Eigendecomposition on matrix 250,000x250,000

Accelerator design is memory-driven

On-chip SRAM is limited

DRAM access is inefficient

Intel Core i7 4-8MB Cache Intel Core i9 25MB Cache Nvidia Geforce 1080 GTX 4928KB SRAM TPU 24MB SRAM FPGA 10MB Latency: 10x SRAM 20x function units Energy consumption: 100x SRAM 1000x function units

Accelerator architecture



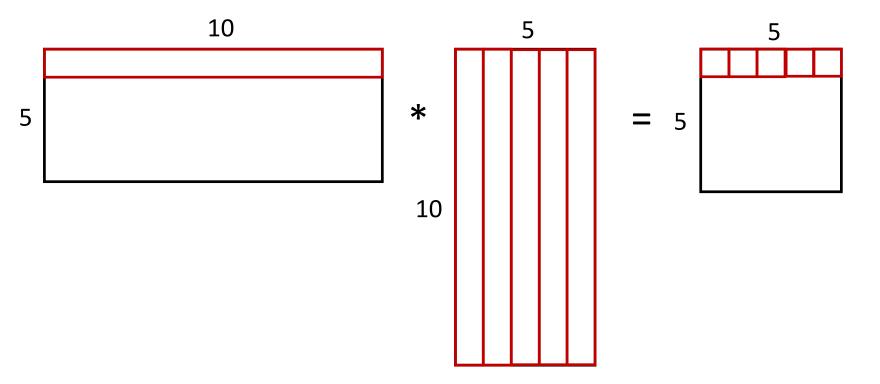
DRAM accesses:

- Compulsory accesses:
 - Load initial input
 - Store back final results
- Accesses due to SRAM limited size:
 - Load/store spilled intermediate results

Determining DRAM accesses: Computation scale SRAM size Data scheduling

Effect of scheduling - DRAM accesses

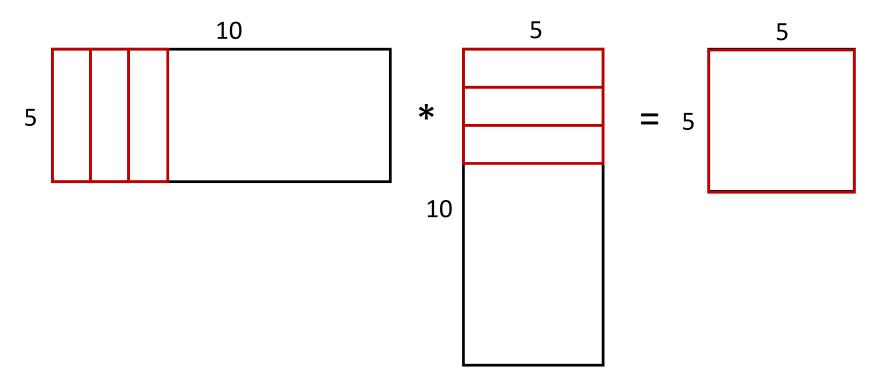
Scratch-pad size: 35 scalar data



DRAM Accesses due to spilling: **30**

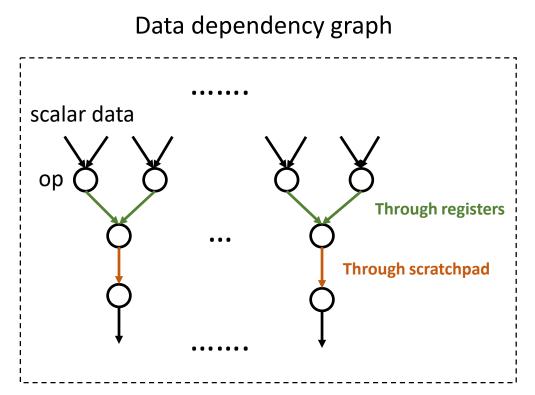
Effect of scheduling - DRAM accesses

Scratch-pad size: 35 scalar data



DRAM Accesses due to spilling: 0

Global Optimization – NP-hard problem



Not feasible:

- Complexity
- Irregular scheduling hard to control

Variables:

Starting cycle of each op

Objective:

- Number of data spilling
- Number of cycles

Constraints:

- Bound on scratchpad size
- Bound on read/write ports
- Function units numbers

Optimization tools:

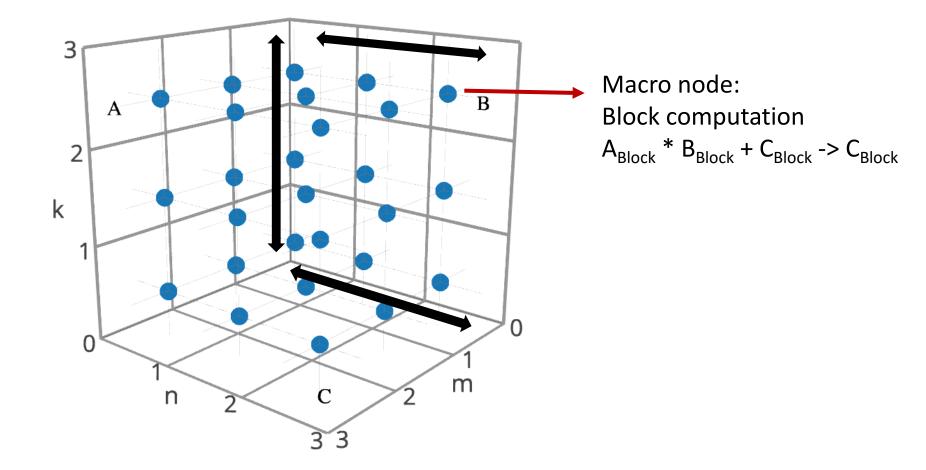
- Modern constraints solvers: SAT, SMT, ILP
- Stimulated annealing

Optimization with regularity

MemFlow

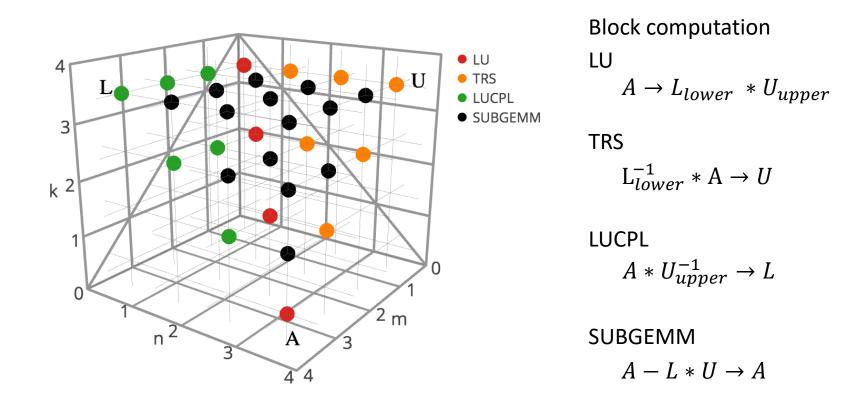
- Tunable parameters from three levels
 - Level1: block dimensions
 - Level2: block scheduling
 - Level3: parallelism of local computing
- Mathematical modeling
 - DRAM accesses, SRAM accesses, cycles
- Integrated optimization

Blocking – matrix multiply



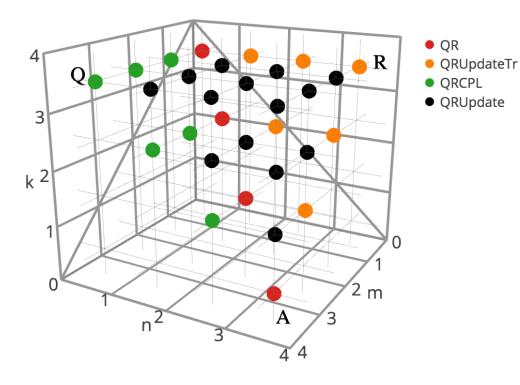
Blocking – LU factorization

 $A \rightarrow L * U$ L is lower triangular matrix, U is upper triangular matrix



Blocking – QR factorization

 $A \rightarrow Q * R$ Q is orthogonal matrix, R is upper triangular matrix



Block computations:

QR

 $A \rightarrow H(V_{lower}) * R_{upper}$

QRUpdateTr H(V_{lower}) $* A \rightarrow R$

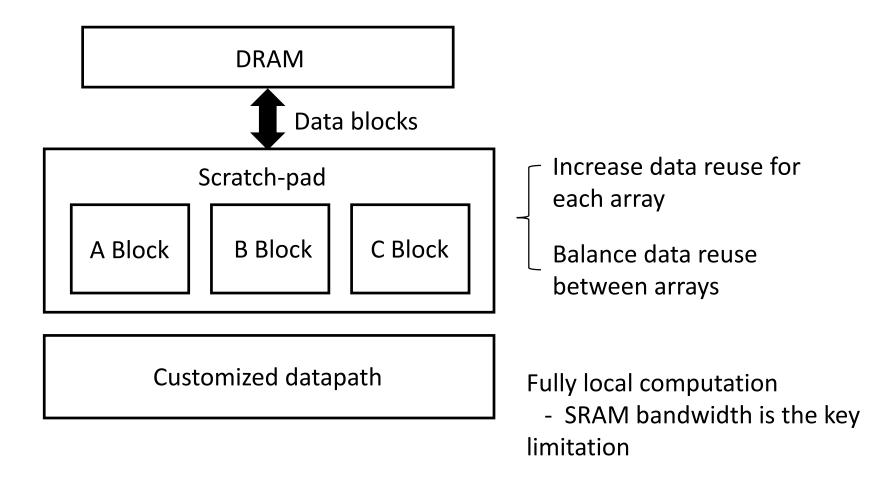
QRCPL

 $A * R_{upper}^{-1} \to H(V)$

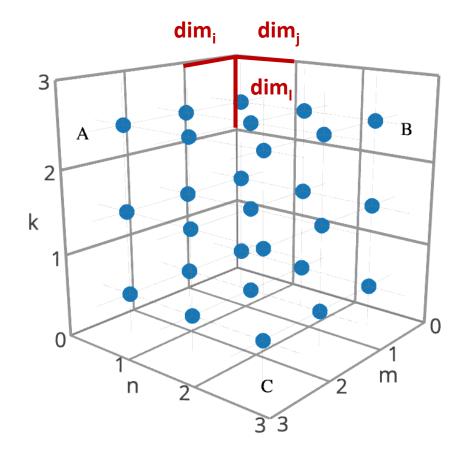
QRUpdate $H(V) * [R, A] \rightarrow [R, A]$

 $V = [v_1, v_2, ..., v_n], H(V) = P_n P_{n-1} ... P_1 \text{ where } P_i = I - v_i v_i^T$

Why blocking?

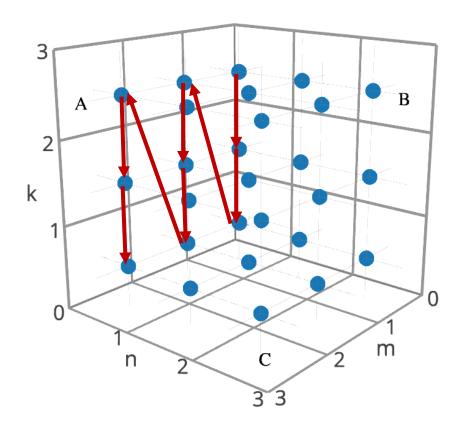


Level1: block dimensions



Not the larger the better!

Level2: block scheduling



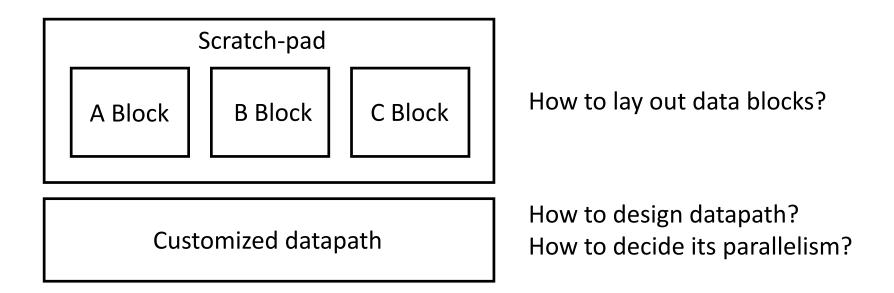
List scheduling + regularity

For $i: 0 \rightarrow num_blk_m$ For $j: 0 \rightarrow num_blk_n$ For $l: 0 \rightarrow num_blk_k$ executing macro node(i, j, l)

Six choices:

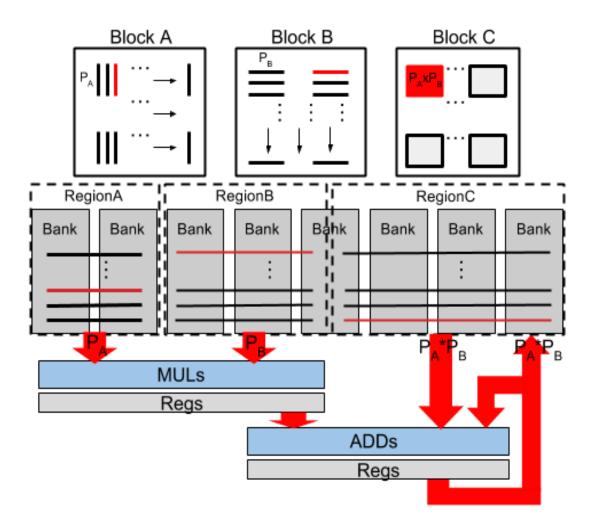
 $\begin{array}{ll} i \rightarrow j \rightarrow l, & j \rightarrow i \rightarrow l, \\ l \rightarrow i \rightarrow j, & i \rightarrow l \rightarrow j, \\ l \rightarrow j \rightarrow i, & j \rightarrow l \rightarrow i \end{array}$

Fully local computation

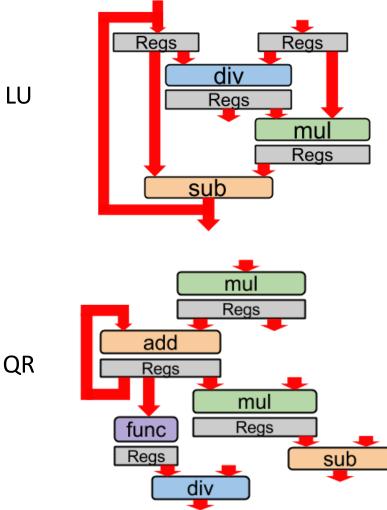


Level3: parallelism of local computation

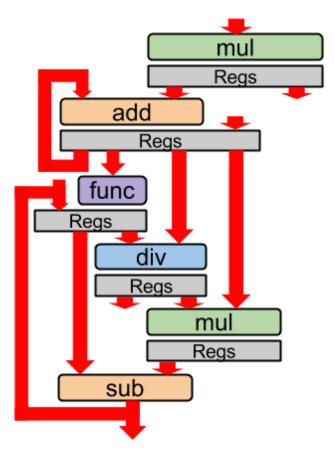
Local computation of matrix multiply macro node



Datapath sharing



Datapath sharing for Matmul, LU and QR



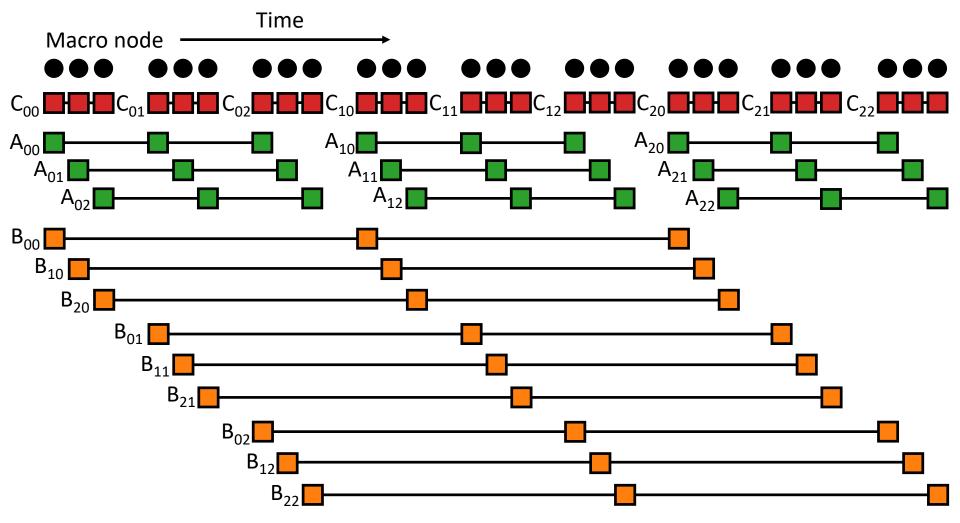
LU

MemFlow

- Tunable parameters from three levels
 - Level1: block dimensions blk_dim, blk_dim, blk_dim
 - Level2: block scheduling six loop ordering
 - Level3: parallelism of local computing P_A, P_B
- Mathematical modeling
 - DRAM accesses, SRAM accesses, cycles
- Integrated optimization

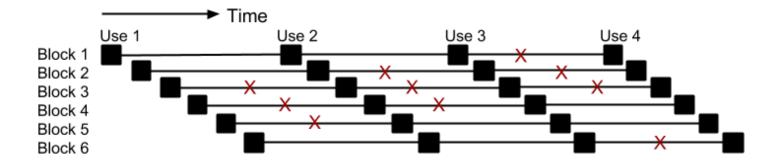
Modeling – DRAM accesses

Block reuse pattern in matrix multiply of loop ordering $i \rightarrow j \rightarrow l$



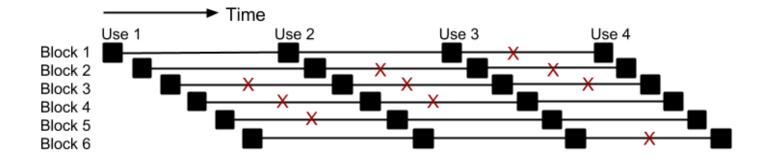
Modeling – DRAM accesses

A group of alternatively used blocks



When SRAM is full, evict block based on optimal replacement policy -- replace block with furthest next use

Modeling – DRAM accesses



#data evicted for each matrix

= #reuse group * #periods * #blocks evicted per period * block size

Input size, Block dimension, block ordering, scratchpad partitioning

Mathematical Modeling

- DRAM accesses:
 - input size, block size, loop ordering, memory partitioning factor
- SRAM Accesses:
 - input size, block dimension, SRAM partitioning
- Cycles:
 - input size, SRAM partitioning

MemFlow

- Tunable parameters from three levels
 - Level1: block dimensions blk_dim_i, blk_dim_i, blk_dim_i
 - Level2: block scheduling six loop ordering
 - Level3: parallelism of local computing P_A, P_B
- Mathematical modeling
 - DRAM accesses, SRAM accesses, cycles
- Integrated optimization

Integrated Optimization

Optimization is sensitive to input size

For specific kernel and input size:

- Parameters:
 - Block dimensions, loop ordering, memory partitioning
- Objectives
 - Primary: weighted total of DRAM accesses and SRAM accesses
 - Secondary: cycles
- Optimization methods
 - Gradient descent to optimal magnitude
 - Parameter sweeping for global optimum
 - Worst-case search space:
 - $O(N^{1.5}PlogP)$, N input size, P total SRAM ports
 - ~90 secs for P=16, N=1000

Results Comparison – cache reuse

Metric of evaluating data reuse:

Number of SRAM allocations:

- Counts each time a new word is stored in SRAM
- For cache, equals to (read misses + write misses)*cache line size

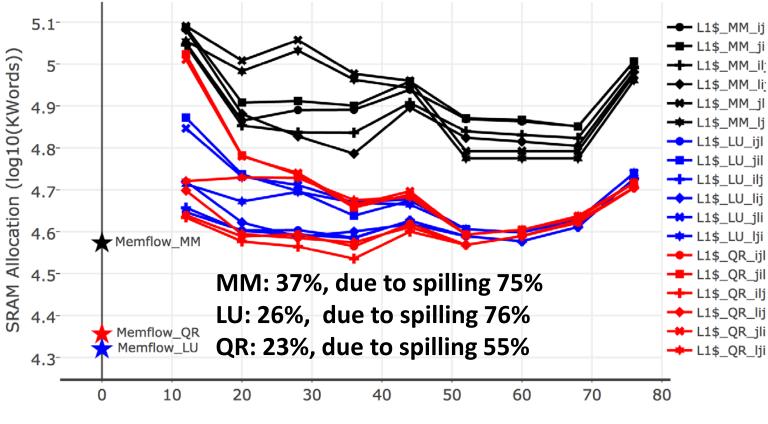
L1 cache:

32KB, 8-way associative, 64B cache line size MemFlow:

8 4KB dual-port banks

Results Comparison – cache reuse

SRAM allocation for MemFlow and L1 cache



Block Size

Results – GPU+cuBLAS

GPU: Nvidia Geforce 1080 GTX

- Total SRAM size: 4928 KB
 - L1 cache, shared memory, L2 cache
- cuBLAS library:
 - Matrix multiply: cublasSgemm
 - LU decomposition: cublasSgetrfBatched
 - QR decomposition: cublasSgeqrfBatched

MemFlow: 1232 4KB dual-port SRAM banks

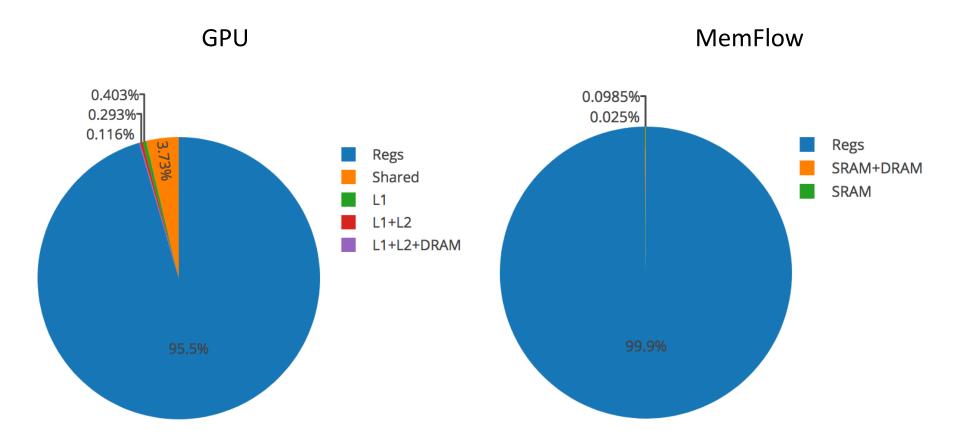
Results – GPU+cuBLAS

Improvements of SRAM and DRAM accesses.

App	N	SRAMAcc (100MB)			DRAMAcc (100MB)			
		GPU	MF	\downarrow	GPU	MF	\downarrow	
MM	1000	8.6	0.2	35.7	0.3	0.2	1.5	
	1500	28.0	0.7	38.4	1.0	0.6	1.6	
	2000	58.2	1.6	35.3	1.5	1.3	1.1	
	2500	113.5	3.3	34.6	3.1	2.5	1.2	
LU	1000	32.3	0.1	247.6	1.3	0.1	12.0	
	1500	105.8	0.4	257.0	5.3	0.3	18.4	
	2000	246.7	0.9	261.3	13.1	0.6	20.9	
	2500	485.1	1.8	268.4	26.1	1.3	20.8	
QR	1000	153.9	27.6	5.6	20.5	0.2	131.7	
	1500	508.3	86.6	5.9	84.3	0.6	134.3	
	2000	1187.2	206.5	5.7	207.9	1.7	119.8	
	2500	2305.2	402.8	5.7	412.5	3.2	127.0	

Results – GPU+cuBLAS

Matrix multiply data use distribution



Results – Vivado HLS

Datapath comparison with Vivado HLS

MacroNode	N	Cycles		FUs (mul,add,sub,div,sqrt)			Regs(bits)			
		HLS	MemFlow	\downarrow	HLS	MemFlow	\downarrow	HLS	MemFlow	\downarrow
GEMM	16	562	229	2.5	(64,64,-,-,-)	(32,32,-,-,-)	2.0	33074	4096	8.0
LU	16	273	222	1.2	(108,-,108,15,-)	(64,-,64,16,-)	1.6	25713	8704	3.0
LUCPL	16	230	222	1.0	(89,-,85,8,-)	(64,-,64,16,-)	1.3	29094	8704	3.3
TRS	16	228	222	1.0	(108,-,106,4,-)	(64,-,64,16,-)	1.5	24996	8704	2.9
SUBMM	16	540	245	2.2	(58,-,47,-,-)	(32,-,32,-,-)	1.6	34972	4096	8.5
QR	16	4000	1932	2.1	(100,28,90,2,2)	(15,8,7,2,3)	6.3	9234	1824	5.0
QRCPL	16	6345	3036	2.1	(119,52,112,2,1)	(13,5,8,3,3)	8.9	40845	1600	25.5
QRUpdateTr	16	3280	1214	2.7	(114,27,87,-,-)	(12,4,8,-,-)	9.5	33275	1280	26.0
QRUpdate	16	5225	1890	2.8	(94,92,81,-,-)	(12,4,8,-,-)	11.1	42759	1280	33.4

Future Work

- More efficient optimization methods
- Optimizing data scheduling for a flow of computation kernels
- Verilog validation