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Demands of large-scale computation

Neural networks

AlexNet 240MB
VGG16             552MB
GoogLeNet 28MB
SqueezeNet 4.8MB

Feature size = 500 x 500 = 250,000
Eigendecomposition on matrix 250,000x250,000

Eigenface



Accelerator design is memory-driven

Latency: 
10x SRAM
20x function units

Energy consumption:
100x SRAM
1000x function units

Intel Core i7 4-8MB Cache
Intel Core i9 25MB Cache
Nvidia Geforce 1080 GTX 

4928KB  SRAM
TPU 24MB SRAM
FPGA 10MB 

DRAM access is inefficientOn-chip SRAM is limited



Accelerator architecture

Software-controlled scratch-pad SRAM

DRAM accesses:
- Compulsory accesses:

- Load initial input
- Store back final results

- Accesses due to SRAM 
limited size:
- Load/store spilled 

intermediate results

Determining DRAM accesses:
Computation scale
SRAM size
Data scheduling



Effect of scheduling - DRAM accesses
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DRAM Accesses due to spilling: 102030



Effect of scheduling - DRAM accesses
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Global Optimization – NP-hard problem

Data dependency graph

…….

…….

op

scalar data

…
Through registers

Through scratchpad

Constraints: 
- Bound on scratchpad size
- Bound on read/write ports
- Function units numbers

Objective:
- Number of data spilling
- Number of cycles

Optimization tools:
- Modern constraints solvers: SAT, 

SMT, ILP
- Stimulated annealing

Not feasible:
- Complexity
- Irregular scheduling – hard to control

Optimization with regularity

Variables: 
- Starting cycle of each op



MemFlow
• Tunable parameters from three levels

• Level1: block dimensions
• Level2: block scheduling
• Level3: parallelism of local computing

• Mathematical modeling
• DRAM accesses, SRAM accesses, cycles

• Integrated optimization



Blocking – matrix multiply

Macro node: 
Block computation
ABlock * BBlock + CBlock -> CBlock



Blocking – LU factorization

Block computation
LU

TRS

LUCPL

SUBGEMM

𝐴𝐴 → 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑈𝑈𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙

𝐴𝐴 ∗ 𝑈𝑈𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙−1 → 𝐿𝐿

L𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 ∗ A → 𝑈𝑈

𝐴𝐴 − 𝐿𝐿 ∗ 𝑈𝑈 → 𝐴𝐴

𝐴𝐴 → 𝐿𝐿 ∗ 𝑈𝑈 L is lower triangular matrix, U is upper triangular matrix



Blocking – QR factorization

Block computations:
QR

QRUpdateTr

QRCPL

QRUpdate

𝐴𝐴 → 𝐻𝐻(𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙

𝐴𝐴 ∗ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙−1 → 𝐻𝐻(𝑉𝑉)

H(Vlower) ∗ A → 𝑅𝑅

𝐻𝐻 𝑉𝑉 ∗ 𝑅𝑅,𝐴𝐴 → [𝑅𝑅,𝐴𝐴]

𝑉𝑉 = 𝑣𝑣1,𝑣𝑣2, . . , 𝑣𝑣𝑛𝑛 ,𝐻𝐻 𝑉𝑉 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛−1. .𝑃𝑃1 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑃𝑃𝑖𝑖 = 𝐼𝐼 − 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇

𝐴𝐴 → 𝑄𝑄 ∗ 𝑅𝑅 Q is orthogonal matrix, R is upper triangular matrix



Why blocking?

DRAM

Scratch-pad

A Block B Block C Block

Customized datapath

Data blocks

Increase data reuse for 
each array

Balance data reuse 
between arrays

Fully local computation
- SRAM bandwidth is the key 

limitation



Level1: block dimensions

dimi dimj

diml

Not the larger the better!



Level2: block scheduling

Six choices:
𝑖𝑖 → 𝑗𝑗 → 𝑙𝑙, 𝑗𝑗 → 𝑖𝑖 → 𝑙𝑙,
𝑙𝑙 → 𝑖𝑖 → 𝑗𝑗, 𝑖𝑖 → 𝑙𝑙 → 𝑗𝑗,
𝑙𝑙 → 𝑗𝑗 → 𝑖𝑖, 𝑗𝑗 → 𝑙𝑙 → 𝑖𝑖

List scheduling  + regularity

For 𝑖𝑖 : 0 → 𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑙𝑙𝑘𝑘𝑚𝑚
For 𝑗𝑗 : 0 → 𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑙𝑙𝑘𝑘𝑛𝑛

For 𝑙𝑙 : 0 → 𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑙𝑙𝑘𝑘𝑘𝑘
executing macro node(𝑖𝑖, 𝑗𝑗, 𝑙𝑙)   



Fully local computation

Scratch-pad

A Block B Block C Block

Customized datapath

How to lay out data blocks? 

How to design datapath?
How to decide its parallelism? 



Level3: parallelism of local computation

Local computation of matrix multiply macro node



Datapath sharing

LU

QR

Datapath sharing for 
Matmul, LU and QR



MemFlow
• Tunable parameters from three levels

• Level1: block dimensions – blk_dimi, blk_dimj, blk_diml
• Level2: block scheduling – six loop ordering 
• Level3: parallelism of local computing – PA, PB

• Mathematical modeling
• DRAM accesses, SRAM accesses, cycles

• Integrated optimization



Modeling – DRAM accesses
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Macro node
Time

Block reuse pattern in matrix multiply of loop ordering 𝑖𝑖 → 𝑗𝑗 → 𝑙𝑙



Modeling – DRAM accesses

A group of alternatively used blocks

When SRAM is full, evict block based on optimal replacement policy
-- replace block with furthest next use



Modeling – DRAM accesses

#data evicted for each matrix 
= #reuse group * #periods * #blocks evicted per period * block size

Input size, Block dimension, block ordering, scratchpad partitioning



Mathematical Modeling

• DRAM accesses:
• input size, block size, loop ordering, memory partitioning 

factor

• SRAM Accesses:
• input size, block dimension, SRAM partitioning

• Cycles:
• input size, SRAM partitioning



MemFlow
• Tunable parameters from three levels

• Level1: block dimensions – blk_dimi, blk_dimj, blk_diml
• Level2: block scheduling – six loop ordering 
• Level3: parallelism of local computing – PA, PB

• Mathematical modeling
• DRAM accesses, SRAM accesses, cycles

• Integrated optimization



Integrated Optimization

• Parameters:
• Block dimensions, loop ordering, memory partitioning

• Objectives
• Primary: weighted total of DRAM accesses and SRAM accesses
• Secondary: cycles

• Optimization methods
• Gradient descent to optimal magnitude
• Parameter sweeping for global optimum

• Worst-case search space: 
𝑂𝑂(𝑁𝑁1.5𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃) , N input size, P total SRAM ports

• ~90 secs for P=16, N=1000

Optimization is sensitive to input size

For specific kernel and input size: 



Results Comparison – cache reuse

Metric of evaluating data reuse: 
Number of SRAM allocations:

- Counts each time a new word is stored in SRAM
- For cache, equals to (read misses + write misses)*cache line size

L1 cache: 
32KB, 8-way associative, 64B cache line size

MemFlow:
8 4KB dual-port banks



Results Comparison – cache reuse
SRAM allocation for MemFlow and L1 cache

MM: 37%, due to spilling 75%
LU: 26%,  due to spilling 76%
QR: 23%, due to spilling 55%



Results – GPU+cuBLAS

GPU:   Nvidia Geforce 1080 GTX
• Total SRAM size: 4928 KB

• L1 cache, shared memory, L2 cache
• cuBLAS library:

• Matrix multiply: cublasSgemm
• LU decomposition: cublasSgetrfBatched
• QR decomposition: cublasSgeqrfBatched

MemFlow: 1232 4KB dual-port SRAM banks



Results – GPU+cuBLAS

Improvements of SRAM and DRAM accesses. 



Results – GPU+cuBLAS
Matrix multiply data use distribution 

GPU MemFlow



Results – Vivado HLS

Datapath comparison with Vivado HLS



Future Work
• More efficient optimization methods
• Optimizing data scheduling for a flow of computation 

kernels
• Verilog validation
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