
MemFlow:
Memory-Driven Data Scheduling with

Datapath Co-design in Accelerators for Large-
scale Applications

Jade Nie
Sharad Malik

This work is sponsored in part by SONIC and C-FAR, funded centers of
STARnet, a Semiconductor Research Corporation (SRC) program sponsored by
MARCO and DARPA

Demands of large-scale computation

Neural networks

AlexNet 240MB
VGG16 552MB
GoogLeNet 28MB
SqueezeNet 4.8MB

Feature size = 500 x 500 = 250,000
Eigendecomposition on matrix 250,000x250,000

Eigenface

Accelerator design is memory-driven

Latency:
10x SRAM
20x function units

Energy consumption:
100x SRAM
1000x function units

Intel Core i7 4-8MB Cache
Intel Core i9 25MB Cache
Nvidia Geforce 1080 GTX

4928KB SRAM
TPU 24MB SRAM
FPGA 10MB

DRAM access is inefficientOn-chip SRAM is limited

Accelerator architecture

Software-controlled scratch-pad SRAM

DRAM accesses:
- Compulsory accesses:

- Load initial input
- Store back final results

- Accesses due to SRAM
limited size:
- Load/store spilled

intermediate results

Determining DRAM accesses:
Computation scale
SRAM size
Data scheduling

Effect of scheduling - DRAM accesses

* =

10

5

5

10

5

5

Scratch-pad size: 35 scalar data

DRAM Accesses due to spilling: 102030

Effect of scheduling - DRAM accesses

* =

10

5

5

10

5

5

Scratch-pad size: 35 scalar data

DRAM Accesses due to spilling: 0

Global Optimization – NP-hard problem

Data dependency graph

…….

…….

op

scalar data

…
Through registers

Through scratchpad

Constraints:
- Bound on scratchpad size
- Bound on read/write ports
- Function units numbers

Objective:
- Number of data spilling
- Number of cycles

Optimization tools:
- Modern constraints solvers: SAT,

SMT, ILP
- Stimulated annealing

Not feasible:
- Complexity
- Irregular scheduling – hard to control

Optimization with regularity

Variables:
- Starting cycle of each op

MemFlow
• Tunable parameters from three levels

• Level1: block dimensions
• Level2: block scheduling
• Level3: parallelism of local computing

• Mathematical modeling
• DRAM accesses, SRAM accesses, cycles

• Integrated optimization

Blocking – matrix multiply

Macro node:
Block computation
ABlock * BBlock + CBlock -> CBlock

Blocking – LU factorization

Block computation
LU

TRS

LUCPL

SUBGEMM

𝐴𝐴 → 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑈𝑈𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙

𝐴𝐴 ∗ 𝑈𝑈𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙−1 → 𝐿𝐿

L𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 ∗ A → 𝑈𝑈

𝐴𝐴 − 𝐿𝐿 ∗ 𝑈𝑈 → 𝐴𝐴

𝐴𝐴 → 𝐿𝐿 ∗ 𝑈𝑈 L is lower triangular matrix, U is upper triangular matrix

Blocking – QR factorization

Block computations:
QR

QRUpdateTr

QRCPL

QRUpdate

𝐴𝐴 → 𝐻𝐻(𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙

𝐴𝐴 ∗ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙−1 → 𝐻𝐻(𝑉𝑉)

H(Vlower) ∗ A → 𝑅𝑅

𝐻𝐻 𝑉𝑉 ∗ 𝑅𝑅,𝐴𝐴 → [𝑅𝑅,𝐴𝐴]

𝑉𝑉 = 𝑣𝑣1,𝑣𝑣2, . . , 𝑣𝑣𝑛𝑛 ,𝐻𝐻 𝑉𝑉 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛−1. .𝑃𝑃1 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑃𝑃𝑖𝑖 = 𝐼𝐼 − 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇

𝐴𝐴 → 𝑄𝑄 ∗ 𝑅𝑅 Q is orthogonal matrix, R is upper triangular matrix

Why blocking?

DRAM

Scratch-pad

A Block B Block C Block

Customized datapath

Data blocks

Increase data reuse for
each array

Balance data reuse
between arrays

Fully local computation
- SRAM bandwidth is the key

limitation

Level1: block dimensions

dimi dimj

diml

Not the larger the better!

Level2: block scheduling

Six choices:
𝑖𝑖 → 𝑗𝑗 → 𝑙𝑙, 𝑗𝑗 → 𝑖𝑖 → 𝑙𝑙,
𝑙𝑙 → 𝑖𝑖 → 𝑗𝑗, 𝑖𝑖 → 𝑙𝑙 → 𝑗𝑗,
𝑙𝑙 → 𝑗𝑗 → 𝑖𝑖, 𝑗𝑗 → 𝑙𝑙 → 𝑖𝑖

List scheduling + regularity

For 𝑖𝑖 : 0 → 𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑙𝑙𝑘𝑘𝑚𝑚
For 𝑗𝑗 : 0 → 𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑙𝑙𝑘𝑘𝑛𝑛

For 𝑙𝑙 : 0 → 𝑛𝑛𝑛𝑛𝑛𝑛_𝑏𝑏𝑙𝑙𝑘𝑘𝑘𝑘
executing macro node(𝑖𝑖, 𝑗𝑗, 𝑙𝑙)

Fully local computation

Scratch-pad

A Block B Block C Block

Customized datapath

How to lay out data blocks?

How to design datapath?
How to decide its parallelism?

Level3: parallelism of local computation

Local computation of matrix multiply macro node

Datapath sharing

LU

QR

Datapath sharing for
Matmul, LU and QR

MemFlow
• Tunable parameters from three levels

• Level1: block dimensions – blk_dimi, blk_dimj, blk_diml
• Level2: block scheduling – six loop ordering
• Level3: parallelism of local computing – PA, PB

• Mathematical modeling
• DRAM accesses, SRAM accesses, cycles

• Integrated optimization

Modeling – DRAM accesses

C01C00 C02 C10 C11 C12 C20 C21 C22

A00
A01

A02

B00
B10

B20

B01

B11
B21

B02
B12

B22

A10
A11

A12

A20
A21

A22

Macro node
Time

Block reuse pattern in matrix multiply of loop ordering 𝑖𝑖 → 𝑗𝑗 → 𝑙𝑙

Modeling – DRAM accesses

A group of alternatively used blocks

When SRAM is full, evict block based on optimal replacement policy
-- replace block with furthest next use

Modeling – DRAM accesses

#data evicted for each matrix
= #reuse group * #periods * #blocks evicted per period * block size

Input size, Block dimension, block ordering, scratchpad partitioning

Mathematical Modeling

• DRAM accesses:
• input size, block size, loop ordering, memory partitioning

factor

• SRAM Accesses:
• input size, block dimension, SRAM partitioning

• Cycles:
• input size, SRAM partitioning

MemFlow
• Tunable parameters from three levels

• Level1: block dimensions – blk_dimi, blk_dimj, blk_diml
• Level2: block scheduling – six loop ordering
• Level3: parallelism of local computing – PA, PB

• Mathematical modeling
• DRAM accesses, SRAM accesses, cycles

• Integrated optimization

Integrated Optimization

• Parameters:
• Block dimensions, loop ordering, memory partitioning

• Objectives
• Primary: weighted total of DRAM accesses and SRAM accesses
• Secondary: cycles

• Optimization methods
• Gradient descent to optimal magnitude
• Parameter sweeping for global optimum

• Worst-case search space:
𝑂𝑂(𝑁𝑁1.5𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃) , N input size, P total SRAM ports

• ~90 secs for P=16, N=1000

Optimization is sensitive to input size

For specific kernel and input size:

Results Comparison – cache reuse

Metric of evaluating data reuse:
Number of SRAM allocations:

- Counts each time a new word is stored in SRAM
- For cache, equals to (read misses + write misses)*cache line size

L1 cache:
32KB, 8-way associative, 64B cache line size

MemFlow:
8 4KB dual-port banks

Results Comparison – cache reuse
SRAM allocation for MemFlow and L1 cache

MM: 37%, due to spilling 75%
LU: 26%, due to spilling 76%
QR: 23%, due to spilling 55%

Results – GPU+cuBLAS

GPU: Nvidia Geforce 1080 GTX
• Total SRAM size: 4928 KB

• L1 cache, shared memory, L2 cache
• cuBLAS library:

• Matrix multiply: cublasSgemm
• LU decomposition: cublasSgetrfBatched
• QR decomposition: cublasSgeqrfBatched

MemFlow: 1232 4KB dual-port SRAM banks

Results – GPU+cuBLAS

Improvements of SRAM and DRAM accesses.

Results – GPU+cuBLAS
Matrix multiply data use distribution

GPU MemFlow

Results – Vivado HLS

Datapath comparison with Vivado HLS

Future Work
• More efficient optimization methods
• Optimizing data scheduling for a flow of computation

kernels
• Verilog validation

	�����MemFlow: �Memory-Driven Data Scheduling with Datapath Co-design in Accelerators for Large-scale Applications
	Demands of large-scale computation
	Accelerator design is memory-driven
	Accelerator architecture
	Effect of scheduling - DRAM accesses
	Effect of scheduling - DRAM accesses
	Global Optimization – NP-hard problem
	MemFlow
	Blocking – matrix multiply
	Blocking – LU factorization
	Blocking – QR factorization
	Why blocking?
	Level1: block dimensions
	Level2: block scheduling
	Fully local computation
	Level3: parallelism of local computation
	Datapath sharing
	MemFlow
	Modeling – DRAM accesses
	Modeling – DRAM accesses
	Modeling – DRAM accesses
	Mathematical Modeling
	MemFlow
	Integrated Optimization
	Results Comparison – cache reuse
	Results Comparison – cache reuse
	Results – GPU+cuBLAS
	Results – GPU+cuBLAS
	Results – GPU+cuBLAS
	Results – Vivado HLS
	Future Work

