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Introduction

MPSoCs are getting more software-centric.

SW has an impact on the performance of MPSoCs.

Accurate feedback on SW performance is necessary during early
phases of MPSoC design.

=⇒ Instruction Interpretation Approaches (ISS, DBT, etc.):
I target instructions transformed into host instructions,
I accurate,
I very slow.

=⇒ Native Simulation (a.k.a. host-compiled simulation):

I SW compiled and executed on the host machine,
I abstraction of low-level architectural details,
I fast.
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Introduction
Native Simulation

HAL API
HAL
EU

Memory

component1 componentk...

Simulation platform

Host workstation

Application
HDS (OS API)

OS

compiler
(host back-end)

host
binary

loaded as a dynamic library

Overview of a Native simulation platform

Execution Unit (EU)
implements:

I Hardware Abstraction Layer
(HAL) API.
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Introduction

Lack of performance information in Native Simulation

Originally developed for purely functional verification of SW on top of
a virtual platform,

Absence of non-functional information (e.g. execution time).

=⇒ How to obtain performance estimates using Native Simulation?
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Software Back-annotation

Software Back-Annotation

Non-functional information (e.g. timing properties) is computed using
low-level analysis and is inserted into the functional model (SW).

1: for (i = 0; i < n; i++) {
2: nb instr+=6;
3: a = b + c;
4: T[i] = (i+1)*a;}

source code

...
addl b(%rip), %ecx
.L3: movl %edx, (%rax)
addq $4, %rax
addl %ecx, %edx
cmpq %rsi, %rax
jne .L3

target binary code

line 3

debug info:

instr operands latency exec. unit ...
MOV r,r 1 ALU ...

... ... ... ... ...
ADD m,r 7 ALU ...

target ISA data sheet

bb cycles instrs
... ... ...

bb6 14 6
... ... ...
target perf. metrics

+

annotation

insertion

Source code annotation
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Software Back-annotation

How to compute non-functional information? (target binary analysis
+ modeling micro-architectural components)

How to introduce target-specific performance metrics into the
functional model (SW)?

I Which software representation (source code, compiler Intermediate
Representation-IR or target binary code) to opt for?

I How to find correspondences between target binary control flow graph
(CFG) and high-level code CFG when:

I compiler optimizations, even the aggressive ones, are enabled (e.g. gcc
-O3)?
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IR-Level Annotation Framework

source code
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and annot insertion

annotated compilable
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target binary
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target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform
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Choice of the Software Representation

How to accurately place non-functional information into the
functional model?

I Choice of the Intermediate Representation (IR),
I Accurate mapping of the functional model to the target binary code.

source code

front-end
&

middle-end
low-level
Gimple

back-end

RTL

Parser

generic

Gimplifier

high-level
Gimple

Tree Optimizer

GCC’s intermediate representations
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IR and binary CFGs Are Not Always Identical

int i=0

i<n

exit a[i]=b[i]+c[i]

false true

Source Code CFG

2

4

5

6

7

3

exit

IR CFG (gcc -O3)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

exit

Binary CFG (gcc -O3) 17



Existing Mapping Approach1

2

4

5

6

7

SCC3

3

exit

IR CFG (gcc -O3)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

exit

Binary CFG (gcc -O3)

Existing mapping
algorithm is efficient with
O2 optimization level

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.
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Existing Mapping Approach1

2SCC1

4SCC2

5

6

7

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

4

5

6

7

8

9 SCC3

10

11

12

13

14

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

SCC: Strongly Connected
Component

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.
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Existing Mapping Approach1
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Binary CFG (gcc -O3)

Loop block contraction
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Existing Mapping Approach1
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Existing Mapping Approach1
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Binary CFG (gcc -O3)

bb5gccbin , bb6gccbin , ...,
bb11gccbin have no match in
the IR

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

23



Loop Unrolling

2SCC1
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Binary CFG (gcc -O3)

Loop Unrolling replicates the loop body UF (Unrolling Factor) times.
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Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)

case1 :

The loop trip count is known at compile time
I The trip count is a multiple of (U F + 1)

loop body(i)
cnt++
if (cnt <= 2)
{inst count+=nb inst}
i++

i<20
(a) IR loop (max itr bound=20)

loop body(i)
loop body(i+1)
...
loop body(i+9)
i+=10

i<20
(b) Unrolled binary loop (max itr bound=2, UF=9)
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Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)

case2 :

The loop trip count is known at compile time
I The trip count is NOT a multiple of (U F + 1)

...
inst count+=nb inst

loop body(i)
cnt++
if (cnt <= 2)
{inst count+=nb inst}
i++

i<23
(a) IR loop (max itr bound=23)

...
loop body(0)

loop body(i)
loop body(i+1)
...
loop body(i+10)
i+=11

i<23
(b) Unrolled binary loop (max itr bound=2, UF=10, first itr peeled)
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Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)case3 :

The loop trip count is unknown at compile time (gcc)

4

5

6

7

8

9

10

11

12

13

14

Partially Unrolled binary loop (gcc)

Only the innermost loop is unrolled.

GCC adds a prologue.

Number of tests depends on the UF.
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Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)case3 :

The loop trip count is unknown at compile time (gcc)

4

5

6

7

8

9

10

11

12

13

14

Partially Unrolled binary loop (gcc)

loop body(i)
cnt++
if (cnt <= (n/4))
{inst count+=nb inst}
i++

i<n
adding a prologue with if statements to the IR
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if (n mod 4)==0

if (n mod 4)==1
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Mapping Scheme for Aggressive Compiler Optimizations

Miscellaneous Optimizations

...

check condition

loop body ...
tru

e false

bb1ir

bb3irbb2ir

bb1bin

bb2bin

bb3bin

check condition

loop body
check condition

...

tru
e

false

true

false

(a) while loop (b) do-while loop

Loop Inversion
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Mapping Scheme for Aggressive Compiler Optimizations

Miscellaneous Optimizations

condition

... ...
...

bb1ir

bb2ir bb3ir

bb4ir

tru
e false

(a) If-then-else in the IR

predicated instruction bb1bin

(b) If-conversion in the binary

If conversion
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Experimentation

Target architecture: Kalray k1 core,

Host Machine: Intel x86-64 core,

Native simulation platform:
I Based on KVM,
I The HW components are modeled with SystemC-TLM,

ISS provided by Kalray.
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Experimentation

Table 1: A sample of the used benchmarks

Benchmark Description

Polybench

covar Covariance Computation

atax Matrix Transpose and Vector Multiplication

reg-detect 2-D Image processing

trmm Triangular matrix-multiply

other

matmult 1 Matrix Multiplication

bubbleSort Bubble Sort

blowfish Symmetric-key block cipher
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Experimentation

Table 2: Comparison of the simulation time

matmult bubbleSort covar atax reg-detect trmm gemver

ISS 0.624 2.863 9.006 2.020 1.396 38.086 4.208

ILS+O3Map 0.180 0.184 0.284 0.196 0.180 0.348 0.196

speedup O3Map 3.47 15.56 31.71 10.31 7.76 109.44 21.47

sim time(s) ILS+O2Map 0.170 0.180 0.282 0.192 0.172 0.348 0.188

speedup O2Map 3.67 15.91 31.94 10.52 8.12 109.44 22.38

ILS+O2Map+ 0.176 0.180 0.282 0.194 0.176 0.348 0.188

speedup O2Map+ 3.56 15.91 31.94 10.41 7.93 109.44 22.38

speedup(ILS + OxMap) =
sim time(ISS)

sim time(ILS + OxMap)
.
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Experimentation

Table 3: Comparison of the instruction count

matmult bubbleSort covar atax reg-detect trmm gemver

ISS 155993 2646028 151302 25748 9892 136033 40556

ILS+O3Map 155993 2656128 154561 25684 10011 136321 40809

error O3Map +0.0% +0.38% +2.15% -0.25% +1.2% +0.21% +0.62%

instr count ILS+O2Map 954293 10498510 902115 109985 18213 862273 176398

error O2Map +512% +297% +496% +327% +84% +534% +335%

ILS+O2Map+ 102893 3600010 98327 14625 5741 88129 29686

error O2Map+ -34% +36% -35% -43% -42% -35% -27%

error(%) =
|nb exec instrs(ILS + OxMap)− nb exec instrs(ISS)|

nb exec instrs(ISS)
× 100.
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Conclusion

We proposed a mapping approach between IR and binary CFGs, when
aggressive compiler optimizations (gcc -O3) are enabled.

We modify the IR CFG without changing its functional behavior.

Experiments show considerable speedup yet high accuracy in
instruction count.
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