
ASP-DAC

A Mapping Approach Between IR and Binary CFGs
dealing with Aggressive Compiler Optimizations for

Performance Estimation

Omayma Matoussi Frédéric Pétrot

TIMA Laboratory – 46 Avenue Félix Viallet, 38031, Grenoble, France

01/24/2018

1

Introduction

MPSoCs are getting more software-centric.

SW has an impact on the performance of MPSoCs.

Accurate feedback on SW performance is necessary during early
phases of MPSoC design.

=⇒ Instruction Interpretation Approaches (ISS, DBT, etc.):
I target instructions transformed into host instructions,
I accurate,
I very slow.

=⇒ Native Simulation (a.k.a. host-compiled simulation):

I SW compiled and executed on the host machine,
I abstraction of low-level architectural details,
I fast.

2

Introduction

MPSoCs are getting more software-centric.

SW has an impact on the performance of MPSoCs.

Accurate feedback on SW performance is necessary during early
phases of MPSoC design.

=⇒ Instruction Interpretation Approaches (ISS, DBT, etc.):
I target instructions transformed into host instructions,
I accurate,
I very slow.

=⇒ Native Simulation (a.k.a. host-compiled simulation):
I SW compiled and executed on the host machine,
I abstraction of low-level architectural details,
I fast.

2

Introduction
Native Simulation

HAL API
HAL
EU

Memory

component1 componentk...

Simulation platform

Host workstation

Application
HDS (OS API)

OS

compiler
(host back-end)

host
binary

loaded as a dynamic library

Overview of a Native simulation platform

Execution Unit (EU)
implements:

I Hardware Abstraction Layer
(HAL) API.

3

Introduction

Lack of performance information in Native Simulation

Originally developed for purely functional verification of SW on top of
a virtual platform,

Absence of non-functional information (e.g. execution time).

=⇒ How to obtain performance estimates using Native Simulation?

4

Outline

1 Introduction

2 Software Back-annotation

3 The Proposed Mapping Approach

4 Experimentation

5 Conclusion

5

Outline

1 Introduction

2 Software Back-annotation

3 The Proposed Mapping Approach

4 Experimentation

5 Conclusion

6

Software Back-annotation

Software Back-Annotation

Non-functional information (e.g. timing properties) is computed using
low-level analysis and is inserted into the functional model (SW).

1: for (i = 0; i < n; i++) {
2: nb instr+=6;
3: a = b + c;
4: T[i] = (i+1)*a;}

source code

...
addl b(%rip), %ecx
.L3: movl %edx, (%rax)
addq $4, %rax
addl %ecx, %edx
cmpq %rsi, %rax
jne .L3

target binary code

line 3

debug info:

instr operands latency exec. unit ...
MOV r,r 1 ALU ...

...
ADD m,r 7 ALU ...

target ISA data sheet

bb cycles instrs
...

bb6 14 6
...
target perf. metrics

+

annotation

insertion

Source code annotation

7

Software Back-annotation

How to compute non-functional information? (target binary analysis
+ modeling micro-architectural components)

How to introduce target-specific performance metrics into the
functional model (SW)?

I Which software representation (source code, compiler Intermediate
Representation-IR or target binary code) to opt for?

I How to find correspondences between target binary control flow graph
(CFG) and high-level code CFG when:

I compiler optimizations, even the aggressive ones, are enabled (e.g. gcc
-O3)?

8

Software Back-annotation

How to compute non-functional information? (target binary analysis
+ modeling micro-architectural components)

How to introduce target-specific performance metrics into the
functional model (SW)?

I Which software representation (source code, compiler Intermediate
Representation-IR or target binary code) to opt for?

I How to find correspondences between target binary control flow graph
(CFG) and high-level code CFG when:

I compiler optimizations, even the aggressive ones, are enabled (e.g. gcc
-O3)?

8

Outline

1 Introduction

2 Software Back-annotation

3 The Proposed Mapping Approach

4 Experimentation

5 Conclusion

9

IR-Level Annotation Framework

source code

cross
compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis
and annot insertion

annotated compilable
IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform

10

IR-Level Annotation Framework

source code

cross
compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis
and annot insertion

annotated compilable
IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform

11

IR-Level Annotation Framework

source code

cross
compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis
and annot insertion

annotated compilable
IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform

12

IR-Level Annotation Framework

source code

cross
compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis
and annot insertion

annotated compilable
IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform

13

IR-Level Annotation Framework

source code

cross
compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis
and annot insertion

annotated compilable
IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform

14

IR-Level Annotation Framework

source code

cross
compiler

IR-CFG

Gimple-CFG-To-C

compilable IR-CFG

time analysis
and annot insertion

annotated compilable
IR-CFG

target binary

Extract CFG

target binary CFG

Extract BB Info BB data base

CFG mapping mapping data base

native
sim platform

15

Choice of the Software Representation

How to accurately place non-functional information into the
functional model?

I Choice of the Intermediate Representation (IR),
I Accurate mapping of the functional model to the target binary code.

source code

front-end
&

middle-end
low-level
Gimple

back-end

RTL

Parser

generic

Gimplifier

high-level
Gimple

Tree Optimizer

GCC’s intermediate representations

16

IR and binary CFGs Are Not Always Identical

int i=0

i<n

exit a[i]=b[i]+c[i]

false true

Source Code CFG

2

4

5

6

7

3

exit

IR CFG (gcc -O3)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

exit

Binary CFG (gcc -O3) 17

Existing Mapping Approach1

2

4

5

6

7

SCC3

3

exit

IR CFG (gcc -O3)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

exit

Binary CFG (gcc -O3)

Existing mapping
algorithm is efficient with
O2 optimization level

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

18

Existing Mapping Approach1

2SCC1

4SCC2

5

6

7

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

4

5

6

7

8

9 SCC3

10

11

12

13

14

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

SCC: Strongly Connected
Component

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

19

Existing Mapping Approach1

2SCC1

4SCC2

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

SCC3

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

Loop block contraction

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

20

Existing Mapping Approach1

2SCC1

4SCC2

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

SCC3

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

Entry SCCs are
fixed-points,

Loop blocks are
fixed-points,

fixed-points are
propagated using
PRED(SCC) and
SUCC (SCC).

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

21

Existing Mapping Approach1

2SCC1

4SCC2

5

6

7

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

4

5

6

7

8

9 SCC3

10

11

12

13

14

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

Entry SCCs are
fixed-points,

Loop blocks are
fixed-points,

fixed-points are
propagated using
PRED(SCC) and
SUCC (SCC).

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

22

Existing Mapping Approach1

2SCC1

4SCC2

5

6

7

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

4

5

6

7

8

9 SCC3

10

11

12

13

14

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

bb5gccbin , bb6gccbin , ...,
bb11gccbin have no match in
the IR

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ...” In: ASP-DAC. 2017.

23

Loop Unrolling

2SCC1

4SCC2

5

6

7

SCC3

3SCC4

exitSCC5

IR CFG (gcc -O3)

2 SCC1

3SCC2

4

5

6

7

8

9 SCC3

10

11

12

13

14

15 SCC4

exit SCC5

Binary CFG (gcc -O3)

Loop Unrolling replicates the loop body UF (Unrolling Factor) times.
24

Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)

case1 :

The loop trip count is known at compile time
I The trip count is a multiple of (U F + 1)

loop body(i)
cnt++
if (cnt <= 2)
{inst count+=nb inst}
i++

i<20
(a) IR loop (max itr bound=20)

loop body(i)
loop body(i+1)
...
loop body(i+9)
i+=10

i<20
(b) Unrolled binary loop (max itr bound=2, UF=9)

25

Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)

case2 :

The loop trip count is known at compile time
I The trip count is NOT a multiple of (U F + 1)

...
inst count+=nb inst

loop body(i)
cnt++
if (cnt <= 2)
{inst count+=nb inst}
i++

i<23
(a) IR loop (max itr bound=23)

...
loop body(0)

loop body(i)
loop body(i+1)
...
loop body(i+10)
i+=11

i<23
(b) Unrolled binary loop (max itr bound=2, UF=10, first itr peeled)

26

Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)case3 :

The loop trip count is unknown at compile time (gcc)

4

5

6

7

8

9

10

11

12

13

14

Partially Unrolled binary loop (gcc)

Only the innermost loop is unrolled.

GCC adds a prologue.

Number of tests depends on the UF.

27

Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)case3 :

The loop trip count is unknown at compile time (gcc)

4

5

6

7

8

9

10

11

12

13

14

Partially Unrolled binary loop (gcc)

loop body(i)
cnt++
if (cnt <= (n/4))
{inst count+=nb inst}
i++

i<n
adding a prologue with if statements to the IR

28

Mapping Scheme for Aggressive Compiler Optimizations
(gcc -O3)case3 :

The loop trip count is unknown at compile time (gcc)

4

5

6

7

8

9

10

11

12

13

14

Partially Unrolled binary loop (gcc)

if (n mod 4)==0

if (n mod 4)==1

if (n mod 4)==2

if (n mod 4)==3

inst count+=nb inst

inst count+=nb inst

inst count+=nb inst

loop body(i)
cnt++
if (cnt <= (n/4))
{inst count+=nb inst}
i++

i<n
adding a prologue with if statements to the IR

28

Mapping Scheme for Aggressive Compiler Optimizations

Miscellaneous Optimizations

...

check condition

loop body ...
tru

e false

bb1ir

bb3irbb2ir

bb1bin

bb2bin

bb3bin

check condition

loop body
check condition

...

tru
e

false

true

false

(a) while loop (b) do-while loop

Loop Inversion

29

Mapping Scheme for Aggressive Compiler Optimizations

Miscellaneous Optimizations

condition

... ...
...

bb1ir

bb2ir bb3ir

bb4ir

tru
e false

(a) If-then-else in the IR

predicated instruction bb1bin

(b) If-conversion in the binary

If conversion

30

Outline

1 Introduction

2 Software Back-annotation

3 The Proposed Mapping Approach

4 Experimentation

5 Conclusion

31

Experimentation

Target architecture: Kalray k1 core,

Host Machine: Intel x86-64 core,

Native simulation platform:
I Based on KVM,
I The HW components are modeled with SystemC-TLM,

ISS provided by Kalray.

32

Experimentation

Table 1: A sample of the used benchmarks

Benchmark Description

Polybench

covar Covariance Computation

atax Matrix Transpose and Vector Multiplication

reg-detect 2-D Image processing

trmm Triangular matrix-multiply

other

matmult 1 Matrix Multiplication

bubbleSort Bubble Sort

blowfish Symmetric-key block cipher

33

Experimentation

Table 2: Comparison of the simulation time

matmult bubbleSort covar atax reg-detect trmm gemver

ISS 0.624 2.863 9.006 2.020 1.396 38.086 4.208

ILS+O3Map 0.180 0.184 0.284 0.196 0.180 0.348 0.196

speedup O3Map 3.47 15.56 31.71 10.31 7.76 109.44 21.47

sim time(s) ILS+O2Map 0.170 0.180 0.282 0.192 0.172 0.348 0.188

speedup O2Map 3.67 15.91 31.94 10.52 8.12 109.44 22.38

ILS+O2Map+ 0.176 0.180 0.282 0.194 0.176 0.348 0.188

speedup O2Map+ 3.56 15.91 31.94 10.41 7.93 109.44 22.38

speedup(ILS + OxMap) =
sim time(ISS)

sim time(ILS + OxMap)
.

34

Experimentation

Table 3: Comparison of the instruction count

matmult bubbleSort covar atax reg-detect trmm gemver

ISS 155993 2646028 151302 25748 9892 136033 40556

ILS+O3Map 155993 2656128 154561 25684 10011 136321 40809

error O3Map +0.0% +0.38% +2.15% -0.25% +1.2% +0.21% +0.62%

instr count ILS+O2Map 954293 10498510 902115 109985 18213 862273 176398

error O2Map +512% +297% +496% +327% +84% +534% +335%

ILS+O2Map+ 102893 3600010 98327 14625 5741 88129 29686

error O2Map+ -34% +36% -35% -43% -42% -35% -27%

error(%) =
|nb exec instrs(ILS + OxMap)− nb exec instrs(ISS)|

nb exec instrs(ISS)
× 100.

35

Outline

1 Introduction

2 Software Back-annotation

3 The Proposed Mapping Approach

4 Experimentation

5 Conclusion

36

Conclusion

We proposed a mapping approach between IR and binary CFGs, when
aggressive compiler optimizations (gcc -O3) are enabled.

We modify the IR CFG without changing its functional behavior.

Experiments show considerable speedup yet high accuracy in
instruction count.

37

ASP-DAC

A Mapping Approach Between IR and Binary CFGs
dealing with Aggressive Compiler Optimizations for

Performance Estimation

Omayma Matoussi Frédéric Pétrot

TIMA Laboratory – 46 Avenue Félix Viallet, 38031, Grenoble, France

01/24/2018

38

	Introduction
	Software Back-annotation
	The Proposed Mapping Approach
	Experimentation
	Conclusion

