ASP-DAC

A Mapping Approach Between IR and Binary CFGs
dealing with Aggressive Compiler Optimizations for
Performance Estimation

Omayma Matoussi Frédéric Pétrot

TIMA Laboratory — 46 Avenue Félix Viallet, 38031, Grenoble, France

01/24/2018

e

Introduction

@ MPSoCs are getting more software-centric.
@ SW has an impact on the performance of MPSoCs.

@ Accurate feedback on SW performance is necessary during early
phases of MPSoC design.

= Instruction Interpretation Approaches (ISS, DBT, etc.):
> target instructions transformed into host instructions,
» accurate,
» very slow.

Introduction

@ MPSoCs are getting more software-centric.
@ SW has an impact on the performance of MPSoCs.

@ Accurate feedback on SW performance is necessary during early
phases of MPSoC design.

= Instruction Interpretation Approaches (ISS, DBT, etc.):
> target instructions transformed into host instructions,
» accurate,
» very slow.

= Native Simulation (a.k.a. host-compiled simulation):
» SW compiled and executed on the host machine,
» abstraction of low-level architectural details,
» fast.

Introduction

@ Native Simulation

(host back-end) L | kps os app

— 0s e Execution Unit (EU)
e implements:

loaded as a dynamic library

» Hardware Abstraction Layer

Bl (HAL) API.
Memory HAL
EU
‘ component; ‘ ‘ componenty, ‘
Simulation platform

!

‘ Host workstation ‘

Overview of a Native simulation platform

Introduction

Lack of performance information in Native Simulation

@ Originally developed for purely functional verification of SW on top of
a virtual platform,

@ Absence of non-functional information (e.g. execution time).

— How to obtain performance estimates using Native Simulation?

@ Introduction

@ Software Back-annotation

© The Proposed Mapping Approach
@ Experimentation

@ Conclusion

o
@ Software Back-annotation
o
(%)

Software Back-annotation

Software Back-Annotation

Non-functional information (e.g. timing properties) is computed using
low-level analysis and is inserted into the functional model (SW).

. 0 . debug info:_{—addl b(%rip)., %ecx
;: f(:; -(l _ug’,l: i) { B _——Tne3 .L3: movl %edx, (%rax)
3: 2_“,‘; S+ Cft'//////// addq $4, %rax

T < (ie1)*a: addl %ecx, %edx
4 Tl = Grbyra} cmpq %rsi, %rax

soyrce code jne L3
annotation target binary code
insertion

bb | cycles [instrs +

bbb 14 6

[" rf " instr | operands | latency | exec. unit
arget pert. metnics MOV or 1 ALU
ADD m,r 7 ALU
target ISA data sheet

Source code annotation

Software Back-annotation

e How to compute non-functional information? (target binary analysis
+ modeling micro-architectural components)

@ How to introduce target-specific performance metrics into the
functional model (SW)?
» Which software representation (source code, compiler Intermediate
Representation-IR or target binary code) to opt for?

» How to find correspondences between target binary control flow graph
(CFG) and high-level code CFG when:

» compiler optimizations, even the aggressive ones, are enabled (e.g. gcc

-03)?

Software Back-annotation

@ How to introduce target-specific performance metrics into the
functional model (SW)?
» Which software representation (source code, compiler Intermediate
Representation-IR or target binary code) to opt for?

» How to find correspondences between target binary control flow graph
(CFG) and high-level code CFG when:

» compiler optimizations, even the aggressive ones, are enabled (e.g. gcc

-03)?

o
(2]
© The Proposed Mapping Approach
o
o

IR-Level Annotation Framework
ﬁ time an.alysis. ﬁ . native
and annot insertion - sim platform

IR-CFG compilable IR-CFG annotated compilable
T IR-CFG

N
cross : -
compiler | CFG mapping }——[mapplng data base

source code

Extract BB Info |-+{BB data base

target binary target binary CFG

10

IR-Level Annotation Framework

IR-CFG

A cross
compiler

source code

target binary

11

IR-Level Annotation Framework
= E

IR-CFG compilable IR-CFG

A cross
compiler

source code

target binary

12

IR-Level Annotation Framework
= E

IR-CFG compilable IR-CFG

A cross
compiler

source code

Extract BB Info |-+ BB data base

target binary target binary CFG

13

IR-Level Annotation Framework
= E

IR-CFG compilable IR-CFG

N T J
cross : -
compiler | CFG mapping }——[mapping data base

source code

Extract BB Info |-+ BB data base

target binary target binary CFG

14

IR-Level Annotation Framework
ﬁ time an.alysis. ﬁ . native
and annot insertion - sim platform

IR-CFG compilable IR-CFG annotated compilable
T IR-CFG

N
cross : -
compiler | CFG mapping }——[mapplng data base

source code

Extract BB Info |-+{BB data base

target binary target binary CFG

15

Choice of the Software Representation

@ How to accurately place non-functional information into the
functional model?
» Choice of the Intermediate Representation (IR),
> Accurate mapping of the functional model to the target binary code.

\ front-end —
« — | [hackend}—
middle-end

source code_ -~ _ _low-level RTL
- Gimpte - - - _

| generic high-level :

GCC's intermediate representations

16

IR and binary CFGs Are Not Always ldentical
(2)

b= ()

Source Code CFG)

IR CFG (gcc -03)

Binary CFG (gcc -03) 17

Existing Mapping Approach!

Existing mapping
algorithm is efficient with
02 optimization level

Ve

IR CFG (gcc -03)

Binary CFG (gcc -03)

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ..." In: ASP-DAC. 2017.
18

Existing Mapping Approach!

SCC: Strongly Connected
Component J

IR CFG (gcc -03)

Binary CFG (gcc -03)

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ..." In: ASP-DAC. 2017.
19

Existing Mapping Approach!

Loop block contraction J

IR CFG (gcc -03)

Binary CFG (gcc -03)

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ..." In: ASP-DAC. 2017.
20

Existing Mapping Approach!

o Entry SCCs are
fixed-points,

o Loop blocks are
fixed-points,

o fixed-points are

,,,,, \ propagated using
scca(3) PRED(SCC) and
SUCC(SCC).
SCCh @
IR CFG (gcc -03)
Binary CFG (gcc -03)
1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ..." In: ASP-DAC. 2017.

21

Existing Mapping Approach!

o Entry SCCs are
fixed-points,

o Loop blocks are
fixed-points,

o fixed-points are
propagated using
PRED(SCC) and
SUCC(SCC).

IR CFG (gcc -03)

Binary CFG (gcc -03)

1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ..." In: ASP-DAC. 2017.
22

Existing Mapping Approach!

bB5ESC, bhGE™, .,
bbllifnc have no match in

I
I
| | the IR
I
I
I
scea! ‘
|
! X I
! I
I
|
___ = J
IR CFG (gcc -03)
Binary CFG (gcc -03)
1Omayma Matoussi and Frédéric Pétrot. “Loop Aware IR-Level Annotation Framework ..." In: ASP-DAC. 2017.

23

Loop Unrolling

IR CFG (gcc -03)

Binary CFG (gcc -03)

Loop Unrolling replicates the loop body UF (Unrolling Factor) times. N

Mapping Scheme for Aggressive Compiler Optimizations

casel :

@ The loop trip count is known at compile time
» The trip count is a multiple of (U F + 1)

Vi v
loop_body(i) loop_body(i)
cnt++ loop_body(i+1)
if (cnt <= 2)
{inst_count+=nb_inst} loop_body(i+9)
1++ 1+=10

v L v L

1<20 1<20

(a) IR loop (max itr bound=20) (b) Unrolled binary loop (max itr bound=2, UF=9)

25

Mapping Scheme for Aggressive Compiler Optimizations

case? :

@ The loop trip count is known at compile time
» The trip count is NOT a multiple of (U F + 1)

inst_count+=nb_inst loop_body(0)

I E— I —
loop_body(i) loop_body(i)
cnt++ loop-body(i+1)
if (cnt <= 2)
{inst_count+=nb_inst} loop_body(i+10)
i++ i+=11

1 I 7 — |

i<23 <23

(a) IR loop (max itr bound=23) (b) Unrolled binary loop (max itr bound=2, UF=10, first itr peeled)

26

Mapping Scheme for Aggressive Compiler Optimizations

case3 :

@ The loop trip count is unknown at compile time (gcc)

@ Only the innermost loop is unrolled.
o GCC adds a prologue.
@ Number of tests depends on the UF.

Partially Unrolled binary loop (gcc) -

Mapping Scheme for Aggressive Compiler Optimizations

case3 :

@ The loop trip count is unknown at compile time (gcc)

Y
loop_body(i)
cnt++
if (cnt <= (n/4))
{inst_count+=nb_inst}
i++

<

v
i<n
adding a prologue with if statements to the IR

Partially Unrolled binary loop (gcc) 28

Mapping Scheme for Aggressive Compiler Optimizations

case3 :

@ The loop trip count is unknown at compile time (gcc)

inst_count+=nb_inst ‘
A
inst_count+=nb_inst ‘

i
|
M
’ inst_count+=nb_inst ‘

—

¥

loop_body(i)
cnt++

if (cnt <= (n/4))
{inst_count+=nb_inst}
i++

'

Partially Unrolled binary loop (gcc) <n 28

Mapping Scheme for Aggressive Compiler Optimizations

@ Miscellaneous Optimizations

v Y

Pblpin | check condition |
& false
3 [v
|check condition| bb1 - loop_body Bb2;, 5,

‘N check condition

w2, | | loop_body see o [B03 J
L]

asyey

(a) while loop (b) do-while loop

Loop Inversion

29

Mapping Scheme for Aggressive Compiler Optimizations

@ Miscellaneous Optimizations

v
ol | condition

_
“‘f/\i’% v

bb2; o] [bb3y predicated instruction | o1y,
bbd; . “ v
(a) If-then-else in the IR (b) If-conversion in the binary

If conversion

30

@ Experimentation

31

Experimentation

o Target architecture: Kalray k1 core,

@ Host Machine: Intel x86-64 core,

@ Native simulation platform:
» Based on KVM,
» The HW components are modeled with SystemC-TLM,

@ |ISS provided by Kalray.

32

Experimentation

Table 1: A sample of the used benchmarks

Benchmark Description

covar Covariance Computation

atax Matrix Transpose and Vector Multiplication
reg-detect 2-D Image processing

trmm Triangular matrix-multiply

matmult 1 Matrix Multiplication
bubbleSort Bubble Sort
blowfish Symmetric-key block cipher

Experimentation

Table 2: Comparison of the simulation time

matmult | bubbleSort | covar | atax | reg-detect | trmm | gemver
ISS 0.624 2.863 9.006 | 2.020 1.396 38.086 | 4.208
ILS+03Map 0.180 0.184 0.284 | 0.196 0.180 0.348 0.196
speedup_O3Map 3.47 15.56 31.71 | 10.31 7.76 109.44 21.47
sim_time(s) ILS+02Map 0.170 0.180 0.282 | 0.192 0.172 0.348 0.188
ILS+02Map+ 0.176 0.180 0.282 | 0.194 0.176 0.348 0.188
speedup_O2Map+ 3.56 15.91 31.94 | 10.41 7.93 109.44 22.38

speedup(ILS + OxMap) =

sim_time(1SS)

sim_time(ILS + OxMap)

34

Experimentation

Table 3: Comparison of the instruction count

matmult | bubbleSort covar atax reg-detect trmm gemver
ISS 155993 2646028 151302 25748 9892 136033 40556
ILS+03Map 155993 2656128 154561 25684 10011 136321 40809

error_ O3Map +0.0% +0.38% +2.15% | -0.25% +1.2% +0.21% | +0.62%

‘ instr_count ILS+02Map 954293 10498510 | 902115 | 109985 18213 862273 | 176398
‘ ILS+02Map+ | 102893 3600010 98327 14625 5741 88129 29686

error O2Map+ | -34% | +36% -35% | -43% 42% | 3% | -21% |

error(%) = nb_exec_instrs(ILS + OxMap) — nb_exec_instrs(ISS))|

100.
nb_exec _instrs(ISS) x

35

© ©6 06 0 O

Conclusion

36

Conclusion

@ We proposed a mapping approach between IR and binary CFGs, when
aggressive compiler optimizations (gcc -O3) are enabled.

@ We modify the IR CFG without changing its functional behavior.

@ Experiments show considerable speedup yet high accuracy in
instruction count.

37

ASP-DAC

A Mapping Approach Between IR and Binary CFGs
dealing with Aggressive Compiler Optimizations for
Performance Estimation

Omayma Matoussi Frédéric Pétrot

TIMA Laboratory — 46 Avenue Félix Viallet, 38031, Grenoble, France

01/24/2018

e

38

	Introduction
	Software Back-annotation
	The Proposed Mapping Approach
	Experimentation
	Conclusion

