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Robust to variation
• Process / Environments variation explosion due to

– Advanced technology scaling
• 10nm, 7nm FinFET
• Double patterning

– Use wide voltage range 
• DVFS (Dynamic Voltage Frequency Scaling)
• NTC (Near Threshold Computing)

– Life time degradation 
• Transistor (NBTI, TDDB, HCI) / Battery
• It can not be presented at release date, so it make potential risk

– Worst case design is too pessimistic
• Binning
• Adaptive / Reactive Clocking



• The Many/Multi core based design is becoming a distributed computing system. 
– Each core has own cache memory and communicates with other core and main 

memory by global bus system. 
– For reducing cache coherency and communication efforts, each core is operated like 

independent system. 

• Furthermore, NoC (Network On Chip) based many/multi core design is 
presented. 

Many/Multi Core Processors
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• Adaptive techniques tune system parameters based on variations in silicon-grade 
and ambient conditions.
– Voltage Droop Detector (Intel, IBM)
– Fault Detector (Canary FF, LASER)
– Ring Oscillator / Critical Path replica circuit
– Global clock and voltage control

Adaptive Clocking Based Design Methodology 
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Difficulty of system level analysis
• How often does adaptive clocking operate?

– When chip is fresh, Failure rate is very low.
– If environments is changed like transistor / battery aging, Adaptive clocking 

operation is often worked.

• Many/Multi-core design with the adaptive clocking
– Each processor core may have a different clock speed.
– Homogeneous system is changed to non-homogeneous system.
– Need average (typical) system performance estimation / optimization method
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Introduction of Queuing theory
• M/M/1 Queue

– The M/M/1 Queue is made of a Poisson arrival, one exponential (Poisson) server, 
FIFO queue of unlimited capacity and unlimited customer population. 

– Easily calculate average (typical) system performance for design exploration

Queue Server

Arrival ratio 
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 Notation Description 

αi(t) A  performance adaptive factor  

λi,  λ Job arrival rate for queue and system (jobs/s) 

μi Initial service rate for server (jobs/s) 

)(~ tiµ  , Adapted service rate of server (jobs/s) 

)(~ tiρ  , Adapted utilization factor of core 

Ni(t), N(t) Average number of jobs in ith core and system 

Ti(t), T(t) Response time of ith core and system 

Pi(t), P(t) Power consumption of  ith core and system 

PLE Leakage power consumption of core when core is enabled 

PLD Leakage power consumption of core when core is disabled 
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Analytical Model for the Adaptive Clocking 
• NoC (Network On Chip) based many/multi core processors is presented by 

distributed computing model.
• Symbols and notations used in analytic modeling
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Analytical Model for the Adaptive Clocking 
• Core’s performance modeling
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• Systems’ performance modeling

Analytical Model for the Adaptive Clocking 
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• Model evaluation using Dual/Quad/Octa Core processor
– Compared with a JMT Computer / Network modeling and simulation tools (Monte-Carlo 

Simulation Based Simulator)
– Each core can process 5.8DMIPS/Mhz (2.8Ghz and 64GB/s for 64-bit instruction)
– Only one core’s clock speed varies from 2.8 GHz (100%) to 1.4 GHz (50%)

Experimental Results - Analytical Model
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Optimal Job Scheduling Method
• Original job distributor use R.R. (Round Robin) method because all core have 

same service time  need new policy (heterogeneous system)
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Optimal Job Scheduling Method
• New closed form method

– Change average number of jobs minimization problem
– Not only minimizes the average response time but also the average power. 
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Optimal Job Scheduling Method
• New closed form method

– use the inequality of arithmetic and geometric means (in-direct solution)
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Optimal Job Scheduling Method
• New closed form method

– use the inequality of arithmetic and geometric means (in-direct solution)
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Optimal Job Scheduling Method
• New closed form method

– use the inequality of arithmetic and geometric means (in-direct solution)
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• Optimal job scheduling evaluation using Dual/Quad/Octa Core processor
– Compared between R.R and our proposed job scheduler
– Each core can process 5.8DMIPS/Mhz (2.8Ghz and 64GB/s for 64-bit instruction)
– Only one core’s clock speed varies from 2.8 GHz (100%) to 1.4 GHz (50%)

Experimental Results – Job Scheduling 
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• Analyze timing failures in Dual Core processor by adaptive clocking operations
– Compared between R.R and our proposed job scheduler
– Use different initial utilization (0.4~0.8)
– Use clock speed change (1~1.9X, Adaptive factor)

Experimental Results – Job Scheduling 

*1 Initial Utilization
0.4 0.5 0.6 0.7 0.8

1.0 1.30E-05 1.56E-05 1.95E-05 2.60E-05 3.91E-05
1.1 1.42E-05 1.74E-05 2.24E-05 3.17E-05 5.53E-05
1.2 1.55E-05 1.95E-05 2.65E-05 4.23E-05 1.37E-04
1.3 1.71E-05 2.23E-05 3.28E-05 6.94E-05 -1.07E-04
1.4 1.89E-05 2.60E-05 4.39E-05 2.86E-04 -2.60E-05
1.5 2.12E-05 3.13E-05 6.84E-05 -1.04E-04 -9.77E-06
1.6 2.39E-05 3.91E-05 1.66E-04 -3.91E-05 -2.79E-06
1.7 2.73E-05 5.21E-05 -3.22E-04 -2.19E-05 1.09E-06
1.8 3.16E-05 7.81E-05 -7.81E-05 -1.40E-05 3.55E-06
1.9 3.74E-05 1.56E-04 -4.32E-05 -9.47E-06 5.26E-06

Diff*2 2.88 10.0 N/A N/A N/A

*1 Initial Utilization
0.4 0.5 0.6 0.7 0.8

1.0 1.30E-05 1.56E-05 1.95E-05 2.60E-05 3.91E-05
1.1 1.41E-05 1.72E-05 2.20E-05 3.07E-05 5.06E-05
1.2 1.51E-05 1.88E-05 2.47E-05 3.61E-05 6.70E-05
1.3 1.61E-05 2.03E-05 2.74E-05 4.23E-05 9.23E-05
1.4 1.71E-05 2.19E-05 3.04E-05 4.97E-05 1.37E-04
1.5 1.80E-05 2.34E-05 3.35E-05 5.86E-05 2.34E-04
1.6 1.89E-05 2.50E-05 3.68E-05 6.94E-05 6.25E-04
1.7 1.98E-05 2.66E-05 4.02E-05 8.30E-05 -1.33E-03
1.8 2.07E-05 2.81E-05 4.39E-05 1.00E-04 -3.52E-04
1.9 2.15E-05 2.97E-05 4.79E-05 1.24E-04 -2.12E-04

Diff*2 1.65 1.90 2.45 4.57 N/A

*1: change of clock speed, an adaptive factor (times)
*2: Average response time of 1.9 / Average response time of 
1.0 at each initial utilization (times) 

round-robin job scheduling Proposed job scheduling 

buffer overflow (system failure) 



Conclusions
• System level analysis is essential

– The adaptive clocking method is good solution for In-situ variations.
– Transistor / battery aging accurate adaptive clocking operation because failure 

rate is increased.
– System level analysis can help architecture or design planning in the early stage 

of system development

• Average (typical) system performance estimation / optimization method
– Propose a queueing theory based analytical model
– An optimal job scheduling method using the inequality of arithmetic and 

geometric means
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