
System Level Performance Analysis and
Optimization for The Adaptive Clocking based

Multi-Core Processor

Byung Su Kim1, Joon-Sung Yang2

1Design Technology Team, Foundry, Samsung Electronics, Korea
2Department of Semiconductor and Display Engineering,

Sungkyunkwan University, Korea
bs2014.kim@skku.edu, js.yang@skku.edu

Robust to variation
• Process / Environments variation explosion due to

– Advanced technology scaling
• 10nm, 7nm FinFET
• Double patterning

– Use wide voltage range
• DVFS (Dynamic Voltage Frequency Scaling)
• NTC (Near Threshold Computing)

– Life time degradation
• Transistor (NBTI, TDDB, HCI) / Battery
• It can not be presented at release date, so it make potential risk

– Worst case design is too pessimistic
• Binning
• Adaptive / Reactive Clocking

• The Many/Multi core based design is becoming a distributed computing system.
– Each core has own cache memory and communicates with other core and main

memory by global bus system.
– For reducing cache coherency and communication efforts, each core is operated like

independent system.

• Furthermore, NoC (Network On Chip) based many/multi core design is
presented.

Many/Multi Core Processors

Network-on-Chip Architecture

PProcessor Unit

PCache Memory

PControl Unit
Router

NOC Tile

• Adaptive techniques tune system parameters based on variations in silicon-grade
and ambient conditions.
– Voltage Droop Detector (Intel, IBM)
– Fault Detector (Canary FF, LASER)
– Ring Oscillator / Critical Path replica circuit
– Global clock and voltage control

Adaptive Clocking Based Design Methodology

Droop
Detecto

r
Fault

Detecto
r

PL
L Clock Modulator

Clock Controller

CPU

Vcc
CPU subsystem

AClockE
rr

or
[1

:]

Core 3

Droop
Detecto

r
Fault

Detecto
r

PL
L Clock Modulator

Clock Controller

CPU

Vcc
CPU subsystem

AClockE
rr

or
[1

:]

Core 2

Droop
Detecto

r
Fault

Detecto
r

PL
L Clock Modulator

Clock Controller

CPU

Vcc
CPU subsystem

AClockE
rr

or
[1

:]

Core 1

Droop
Detector

Fault
Detector

DLL Clock Controller

Adaptive Clock Generator

CPU

VccCPU subsystem

AClockW
ar

ni
ng

Core 0
Reference Clock

Warning[1:8]

AClock1

AClock2

Difficulty of system level analysis
• How often does adaptive clocking operate?

– When chip is fresh, Failure rate is very low.
– If environments is changed like transistor / battery aging, Adaptive clocking

operation is often worked.

• Many/Multi-core design with the adaptive clocking
– Each processor core may have a different clock speed.
– Homogeneous system is changed to non-homogeneous system.
– Need average (typical) system performance estimation / optimization method

Fa
ilu

re
 R

at
e

Aging

Fail rate : 0.1/us
Recovery time : 10ns
Overhead(per sec) : 0.001s

Fail rate : 10/us
Recovery time : 20ns
Overhead (per sec) : 0.2s

Introduction of Queuing theory
• M/M/1 Queue

– The M/M/1 Queue is made of a Poisson arrival, one exponential (Poisson) server,
FIFO queue of unlimited capacity and unlimited customer population.

– Easily calculate average (typical) system performance for design exploration

Queue Server

Arrival ratio

λ
Service ratio

μ

Utilization

Number of Jobs

Average response time

µ
λρ =

ρ
ρ
−

=
1

N

λµλ −
==

1NT

Bernoulli (Poisson) process
E[T] = 1/ λ

time

 Notation Description

αi(t) A performance adaptive factor

λi, λ Job arrival rate for queue and system (jobs/s)

μi Initial service rate for server (jobs/s)

)(~ tiµ , Adapted service rate of server (jobs/s)

)(~ tiρ , Adapted utilization factor of core

Ni(t), N(t) Average number of jobs in ith core and system

Ti(t), T(t) Response time of ith core and system

Pi(t), P(t) Power consumption of ith core and system

PLE Leakage power consumption of core when core is enabled

PLD Leakage power consumption of core when core is disabled

)(ti

i
α
µ

)(~ ti

i
µ
λ

Analytical Model for the Adaptive Clocking
• NoC (Network On Chip) based many/multi core processors is presented by

distributed computing model.
• Symbols and notations used in analytic modeling

Job
Scheduler

λ1

λ2

λ3

λ4

μ1(t)

Core

μ2(t)

μ3(t)

μ4(t)

Analytical Model for the Adaptive Clocking
• Core’s performance modeling

)(
)(

)(~)(~1
)(~

)(
t

t
tt

t
tN

iii

ii

ii

i

i

i
i αλµ

αλ
λµ

λ
ρ

ρ
⋅−

⋅
=

−
=

−
=Number of Jobs

Average response time

Average power consumption

)(
)(

)(~
1)(

)(
t

t
t

tN
tT

iii

i

iii

i
i αλµ

α
λµλ ⋅−

=
−

==

()









=

⋅
⋅

==

−++⋅⋅⋅=

−+⋅+
⋅⋅⋅=

ConsttfreqConst
tfreq

t
tfreq

PP
t

PvddC

PtPt
vddtfreqCttP

i

i

i

LDLE
i

i
LEcorei

LDiLEi

coreii

1
)(*

)(
)(~
)(

)(~

))(1()(
)()()(

2

2

α
α

µ
ξ

µ
λ

ξλ

ρρ
ρ



• Systems’ performance modeling

Analytical Model for the Adaptive Clocking

∑
=

=
m

i
i tNtN

1

)()(

m

m

i
i

i
m

m tTtTtTtTtT

λλλλ

λ
λ

λ
λ

λ
λ

λ
λ

+++=

=+++= ∑
=

...

)()(...)()()(

21

1
2

2
1

1

()

()∑

∑

∑

=

=

=

−+⋅+⋅⋅⋅=

−++⋅⋅⋅=

=

m

i
LDLE

i

i
LDcore

m

i
LDLE

i

i
LDcorei

m

i
i

PP
t

PmvddC

PP
t

PvddC

tPtP

1

2

1

2

1

)(~

)(~

)()(

µ
λ

ξλ

µ
λ

ξλ

Number of Jobs

Average response time

Average power consumption

• Model evaluation using Dual/Quad/Octa Core processor
– Compared with a JMT Computer / Network modeling and simulation tools (Monte-Carlo

Simulation Based Simulator)
– Each core can process 5.8DMIPS/Mhz (2.8Ghz and 64GB/s for 64-bit instruction)
– Only one core’s clock speed varies from 2.8 GHz (100%) to 1.4 GHz (50%)

Experimental Results - Analytical Model

0.003

0.013

0.023

0.033

0.043

0.053

0.5 0.6 0.7 0.8 0.9 1
0

R
es

po
ns

e
Ti

m
e

(u
s)

40

80

120

160

200

50
Adapted clock speed change (Ratio %)

60 70 80 90 100

Simulation (Dual Core)
Simulation (Quad Core)
Simulation (Octa Core)

Proposed (Dual Core)
Proposed (Quad Core)
Proposed (Octa Core)

0.5

0.55

0.6

0.65

0.7

0.75

0.5 0.6 0.7 0.8 0.9 1

U
til

iz
at

io
n

0.6

0.7

50
Adapted clock speed change (Ratio %)

60 70 80 90 100

Simulation (Dual Core)
Simulation (Quad Core)
Simulation (Octa Core)

Proposed (Dual Core)
Proposed (Quad Core)
Proposed (Octa Core)

0.5

Optimal Job Scheduling Method
• Original job distributor use R.R. (Round Robin) method because all core have

same service time  need new policy (heterogeneous system)

m

ii

i

m

m

t

PP

T

λλλλ
µλ

λ

λλλ

λλλ

+++=
<∀
≥∀

≤

...
)(~

0

),...,,(
toSubject

),...,,(Minimize

21

target21

21

Job
Scheduler

λ1

λ2

λ3

λ4

μ1(t)

μ2(t)

μ3(t)

μ4(t)

Optimal Job Scheduling Method
• New closed form method

– Change average number of jobs minimization problem
– Not only minimizes the average response time but also the average power.

∑∑
==

==
m

i
i

m

i
i

i tNtTtT
11

)(1)()(
λλ

λ

)(~

)()()(,,

t
W

SW

tNtNtN

i

i
ii

iiii

iSiQi

µ
λλ

λλ

+=

+=

+=

)()(
)(~)(

11
tPtN

t
WtT Q

m

i i

i
m

i
ii +∝+= ∑∑

== µ
λλ

∑∑
==

=∝
m

i i

i
m

i
i t

ttP
11)(~)(~)(
µ
λ

ρ

NQ : avg. number of job in queue
NS : avg. number of job in server
W : avg. waiting time in the queue
S : avg. service time in in the server

Optimal Job Scheduling Method
• New closed form method

– use the inequality of arithmetic and geometric means (in-direct solution)

m mm

m

i
i tNtNtNmtNtNtNN)()...()()(...)()(2121

1
⋅≥+++=∑

=

a minimum condition of equation by holding
equality if and only if N1 = N2 = … = Nm.

∑∑∑
===

=∝==
m

i
i

m

i
i

m

i
i

i tNtTtNtTtT
111

)()(~)(1)()(
λλ

λ

Optimal Job Scheduling Method
• New closed form method

– use the inequality of arithmetic and geometric means (in-direct solution)

min21 .. NNNN m ====

min

min
22

2

min
11

1

)(~

...
)(~

)(~

N
t

N
t

N
t

mm

m =
−

=
−

=
−

λµ
λ

λµ
λ

λµ
λ

()
()

()mmm tN

tN
tN

λµλ

λµλ
λµλ

−=

−=
−=

)(~
...

)(~
)(~

min

22min2

11min1











−= ∑∑∑

===

m

i
i

m

i
i

m

i
i tN

11
min

1
)(~ λµλ

λ

Optimal Job Scheduling Method
• New closed form method

– use the inequality of arithmetic and geometric means (in-direct solution)

λµ

λ

−

=

∑
=

m

i
i t

N

1

min

)(~)(~
1 min

min t
N

N
ii µλ

+
=

I f ui(t) is changed

Job
Scheduler

λ1

λ2

λ3

λ4

μ1(t)

μ2(t)

μ3(t)

μ4(t)

• Optimal job scheduling evaluation using Dual/Quad/Octa Core processor
– Compared between R.R and our proposed job scheduler
– Each core can process 5.8DMIPS/Mhz (2.8Ghz and 64GB/s for 64-bit instruction)
– Only one core’s clock speed varies from 2.8 GHz (100%) to 1.4 GHz (50%)

Experimental Results – Job Scheduling

0.004

0.014

0.024

0.034

0.044

0.004 0.006 0.008
10

10 20 30

50

90

130

170

R
es

po
ns

e
Ti

m
e

of
 R

R
 M

et
ho

d
(u

s)

Response Time of Proposed Method (us)

Dual Core
Quad Core
Octa Core
1X
2X

0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8

Dual Core
Quad Core
Octa Core
1X
1.1X

0.5

0.6

0.7

0.8

U
til

iz
at

io
n

of
 R

R
 M

et
ho

d

Utilization of Proposed Method
0.5 0.6 0.7 0.8

• Analyze timing failures in Dual Core processor by adaptive clocking operations
– Compared between R.R and our proposed job scheduler
– Use different initial utilization (0.4~0.8)
– Use clock speed change (1~1.9X, Adaptive factor)

Experimental Results – Job Scheduling

*1 Initial Utilization
0.4 0.5 0.6 0.7 0.8

1.0 1.30E-05 1.56E-05 1.95E-05 2.60E-05 3.91E-05
1.1 1.42E-05 1.74E-05 2.24E-05 3.17E-05 5.53E-05
1.2 1.55E-05 1.95E-05 2.65E-05 4.23E-05 1.37E-04
1.3 1.71E-05 2.23E-05 3.28E-05 6.94E-05 -1.07E-04
1.4 1.89E-05 2.60E-05 4.39E-05 2.86E-04 -2.60E-05
1.5 2.12E-05 3.13E-05 6.84E-05 -1.04E-04 -9.77E-06
1.6 2.39E-05 3.91E-05 1.66E-04 -3.91E-05 -2.79E-06
1.7 2.73E-05 5.21E-05 -3.22E-04 -2.19E-05 1.09E-06
1.8 3.16E-05 7.81E-05 -7.81E-05 -1.40E-05 3.55E-06
1.9 3.74E-05 1.56E-04 -4.32E-05 -9.47E-06 5.26E-06

Diff*2 2.88 10.0 N/A N/A N/A

*1 Initial Utilization
0.4 0.5 0.6 0.7 0.8

1.0 1.30E-05 1.56E-05 1.95E-05 2.60E-05 3.91E-05
1.1 1.41E-05 1.72E-05 2.20E-05 3.07E-05 5.06E-05
1.2 1.51E-05 1.88E-05 2.47E-05 3.61E-05 6.70E-05
1.3 1.61E-05 2.03E-05 2.74E-05 4.23E-05 9.23E-05
1.4 1.71E-05 2.19E-05 3.04E-05 4.97E-05 1.37E-04
1.5 1.80E-05 2.34E-05 3.35E-05 5.86E-05 2.34E-04
1.6 1.89E-05 2.50E-05 3.68E-05 6.94E-05 6.25E-04
1.7 1.98E-05 2.66E-05 4.02E-05 8.30E-05 -1.33E-03
1.8 2.07E-05 2.81E-05 4.39E-05 1.00E-04 -3.52E-04
1.9 2.15E-05 2.97E-05 4.79E-05 1.24E-04 -2.12E-04

Diff*2 1.65 1.90 2.45 4.57 N/A

*1: change of clock speed, an adaptive factor (times)
*2: Average response time of 1.9 / Average response time of
1.0 at each initial utilization (times)

round-robin job scheduling Proposed job scheduling

buffer overflow (system failure)

Conclusions
• System level analysis is essential

– The adaptive clocking method is good solution for In-situ variations.
– Transistor / battery aging accurate adaptive clocking operation because failure

rate is increased.
– System level analysis can help architecture or design planning in the early stage

of system development

• Average (typical) system performance estimation / optimization method
– Propose a queueing theory based analytical model
– An optimal job scheduling method using the inequality of arithmetic and

geometric means

	System Level Performance Analysis and Optimization for The Adaptive Clocking based Multi-Core Processor
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18

