
15.02.2018, Dustin Peterson | University of Tuebingen | Germany

Eingebettete Systeme

Detecting Non-Functional Circuit Activity in
SoC Designs
Asia & South Pacific Design Automation Conference 2018

2 | Detecting Non-Functional Circuit Activity in SoC Designs

Agenda
1. Motivation: What is the benefit of determining non-functional activity?

2. Our Methodology
- Design Analysis
- Activity Simulation

3. Evaluation Results

4. Summary & Future Work

3 | Detecting Non-Functional Circuit Activity in SoC Designs

1 MOTIVATION
What is the benefit of determining non-functional activity?

4 | Detecting Non-Functional Circuit Activity in SoC Designs

The benefit of determining non-functional activity…

• When designing SoCs, a bunch of optimizations at RTL for reducing the
toggle activity in a design, like Clock Gating, Operand Isolation, …

• Basic idea of each method: Identify under which conditions several
signals or signal groups are not needed to assure correct circuit function.

M
U

X

𝑆𝑆 = ⊤

A

B
X

As long as S=⊤ , all activity at A
is cut off by the multiplexer!

Divider Result
Register

Branch
taken?

If division result is not needed, divider activity is redundant!

Pipelined Processor

We refer to toggle activity in a design, that is not needed for a correct
function, as being non-functional!

5 | Detecting Non-Functional Circuit Activity in SoC Designs

The benefit of determining non-functional activity…

• Commercial tools like Synopsys PrimeTime or ANSYS PowerArtist
provide activity metrics such as the toggle activity to identify design issues.

- But: Non-functional (redundant) activity needs to be identified manually!

ANSYS PowerArtist: The yellow boxes and arrows are designer knowledge and are obtained manually!

Today: Is there a chance to obtain non-functional activity automatically?

6 | Detecting Non-Functional Circuit Activity in SoC Designs

2 OUR METHODOLOGY

7 | Detecting Non-Functional Circuit Activity in SoC Designs

Methodology

RTL Design

Elaboration

Elaborated RTL
Netlist

Design Analysis

Simulation Graph

Activity Simulator Activity TracesVCD FilesVCD FilesVCD Files

Done by Synopys Design Compiler.

GTECH-based RTL netlist preserving
the original design structure including
components, ports and registers.

Offline Design Analysis leads
to a graph that is used for activity
simulation.

(A) Design Analysis.
Needs to be done

only once per design!

(B) Activity Simulation.
Needs to be done per testbench!

Activity TracesActivity Traces

8 | Detecting Non-Functional Circuit Activity in SoC Designs

Elaboration

• Starting Point: Synthesizable RTL Design
- Elaboration with Synopsys Design Compiler.
- Generation of a Verilog RTL Netlist.
 Maps statements like if, case, … to generic boolean logic.
 Retains RTL design structure (components, registers, ports).
 Used for a formal design analysis.

module my_module(CLK, A, S, X);
input CLK, A, S;
output X;
reg R;

assign X = S ? R : A;

always @(posedge CLK) R <= A;

endmodule;

module my_module(CLK, A, S, X);
input CLK, A, S;
output X;
wire N0;

GTECH_MUX2(.A(A), .B(NO),
.S(S) .Z(X));

¥**SEQGEN** R_reg(.clocked(CLK),
.next_state(A), .Q(N0))

endmodule;

RTL Design Elaborated RTL Netlist

Elaboration

9 | Detecting Non-Functional Circuit Activity in SoC Designs

Design Analysis: Formalizing Design

• Deriving a graph representation of the elaborated RTL netlist!

Simulation Graph

module my_module(CLK, A, S, X);
input CLK, A, S;
output X; wire N0;

GTECH_MUX2(.A(A), .B(NO), .S(S), .Z(X));
¥**SEQGEN** R_reg(.clocked(CLK), .next_state(A), .Q(N0))

endmodule;

Nodes represent circuit
elements like component
ports or registers

Edges represent functional
dependencies between
nodes

10 | Detecting Non-Functional Circuit Activity in SoC Designs

Boolean Expression Diagrams (BEDs)

• BEDs1 are a generalization of Binary Decision Diagrams (BDDs).
• Nodes can be either shannon nodes (similar to nodes in BDDs, each with low

and high outgoing high edge) or terminal nodes, but also operation nodes!
• Efficient methods for converting BEDs into full or partial BDDs are available!

∨

∧ ∧

A S RS

⊤ ⊥

Operation nodes

Shannon nodes

Terminal nodes

up_all ({S,A,R})

Creating a full BDD with the
variable order S > A > R.

up ({A})

Creating a partial
BDD with only A.

Partial BDD with A at root.

Full BDD with S > A > R.

1H. Andersen and H. Hulgaard, “Boolean expression diagrams,” Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, 1997.

11 | Detecting Non-Functional Circuit Activity in SoC Designs

Design Analysis: Don‘t Care Analysis

For each node X and each incoming edge V X, a don’t care function will be derived
𝑫𝑫 𝑭𝑭𝑿𝑿,𝑽𝑽 = 𝑭𝑭𝑿𝑿,𝑽𝑽=⊤ ⊗ 𝑭𝑭𝑿𝑿,𝑽𝑽=⊥: Under which condition is V X inactive?

• The resulting function 𝐷𝐷(𝐹𝐹,𝑣𝑣) is then converted to a partial BDD with a heuristic
variable order (e.g. S > A > R) and rounded down to higher-order variables!

- Control signals have higher priority!
- Rounding eliminates conflicts between don’t care conditions (e.g. if A is inactive

because S is true, S cannot be inactive because A==B, at the same time!)

𝐷𝐷(𝑋𝑋,𝐴𝐴) up (S)
round (S)

Rounded 𝐷𝐷(𝑋𝑋,𝐴𝐴)

up (∅)
round (∅) ⊥

𝐷𝐷(𝑋𝑋, 𝑆𝑆) Rounded 𝐷𝐷(𝑋𝑋, 𝑆𝑆)

Transfer function FX of X.

Don‘t
care (A)

Don‘t
care (S)

D(X,A) FX D(X,S)

V XD(FX,V)

12 | Detecting Non-Functional Circuit Activity in SoC Designs

Design Analysis: Don‘t Care Analysis

• Finally the simulation graph gets a boolean function INACTIVE for each edge
that determines under which condition a specific edge is not used.

- Something similar is done for a register: KEEPS_VALUE

13 | Detecting Non-Functional Circuit Activity in SoC Designs

Activity Simulation

• Simulation Graph is now used with a VCD file to determine
functional and non-functional activity per cycle.

• Two-Phase Simulation Model:
a) Forward Simulation
b) Backward Propagation

Simulation Graph

VCD File

14 | Detecting Non-Functional Circuit Activity in SoC Designs

Activity Simulation: Forward Simulation

• During forward simulation all don‘t care functions are solved by
taking the exact values of each signal from the VCD trace.

• For each cycle, we determine:
- Is a register written this cycle or does it retain its current value?
- Is an edge actively read or is it inactive?

Simulation Graph

VCD File

15 | Detecting Non-Functional Circuit Activity in SoC Designs

Activity Simulation: Backward Propagation

• During backward propagation all information is propagated backwards in
time and space.

- Time Propagation: Remove register writes without any future read!
- Space Propagation: If a node has only non-functional outgoing edges,

mark all incoming edges non-functional!

Simulation Graph

VCD File

We end up with a cycle-by-cycle trace,
which shows which registers and which

edges are functional or non-functional in a
particular cycle!

All outgoing edges
are inactive!

Set incoming edges
inactive, too!

16 | Detecting Non-Functional Circuit Activity in SoC Designs

3 EVALUATION RESULTS

17 | Detecting Non-Functional Circuit Activity in SoC Designs

Implementation

• Methodology implemented as a Scala library and integrated as a plugin into
Synopsys Design Compiler.

• Evaluation done based on a variety of open source + commercial designs:
- x86-compatible open source processor (http://zet.aluzina.org)
- RISC-V based Murax SoC (https://github.com/SpinalHDL/VexRiscv)
- Commercial ASIP architecture

http://zet.aluzina.org/
https://github.com/SpinalHDL/VexRiscv

18 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on x86-compatible processor Zet v1.3.1

Example Design: x86 Zet
• x86-compatible open source processor design (opencores.org)
• Activity report for Zet running 19_segpr (1 division)

• Plugin runtime for this design1:
- Design Analysis: ~25 seconds
- Simulation: ~350 microseconds per simulated cycle

Difference between both curves is the non-functional activity!

19 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on x86-compatible processor Zet v1.3.1

Example Design: x86 Zet
• x86-compatible open source processor design (opencores.org)
• Sleep Mode Trace for Zet running 18_div (30 divisions)

Green: Component is active!
White: Component is idle!

20 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on RISC-V-based Murax SoC

• RISC-V-based Murax SoC (https://github.com/SpinalHDL/VexRiscv)
- RISC-V attached to an AXI bus with on-chip RAM
- 2 timers attached to an APB bus using an AXI ↔ APB bridge

• Plugin runtime for this design1:
- Design Analysis: ~30 min
- Simulation: ~1.5 milliseconds per simulated cycle

1 Intel Core i5-3470 3.2GHz, Scientific Linux 7.4, no multi-threading implemented

Software running on the RISC-V. Sleep Mode Traces derived by our tool.

21 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on commercial ASIP

• Commercial ASIP architecture in two different flavours:
- A) Implementation without functional unit clock gating
- B) Implementation with functional unit clock gating

• Evaluation of Clock Gating Efficiency of both flavours using the
Dhrystone benchmark:

• Plugin runtime for this design1:
- Design Analysis: ~15 min
- Simulation: ~3 to 5 milliseconds per simulated cycle

1 Intel Core i5-3470 3.2GHz, Scientific Linux 7.4, no multi-threading implemented

(A) (B)

R
el

at
iv

e
nu

m
be

ro
fc

lo
ck

ed
re

gi
st

er
s

22 | Detecting Non-Functional Circuit Activity in SoC Designs

4 SUMMARY

23 | Detecting Non-Functional Circuit Activity in SoC Designs

Summary & Future Work

• Developed, implemented and evaluated a
methodology for detecting functional and
non-functional activity in RTL simulations.

• Evaluated a variety of designs: an open source processor, a commercial
ASIP and a RISC-V based SoC

• Future Work
- Speed up simulation speed by either lossless graph compressions or

by losing some accuracy, for example merging N 1-bit registers into
one simulation graph node.

- Analysis of the PULPino SoC design.
- Using Sleep Mode Traces for pattern-based clustering of a design into

power domains like in1.

1 A. Dobriyal et al., “Workload Driven Power Domain Partitioning,” in Progress in VLSI Design and Test, 2012.

24 | Detecting Non-Functional Circuit Activity in SoC Designs

Thank you!
Dustin Peterson

Eberhard Karls Universität Tübingen
Lehrstuhl für Eingebettete Systeme
Fon: +49 7071 - 29 – 75458
Fax: +49 7071 - 29 – 5062
E-Mail: dustin.peterson@uni-tuebingen.de

	Detecting Non-Functional Circuit Activity in SoC Designs
	Agenda
	1 Motivation
	The benefit of determining non-functional activity…
	The benefit of determining non-functional activity…
	2 Our Methodology
	Methodology
	Elaboration
	Design Analysis: Formalizing Design
	Boolean Expression Diagrams (BEDs)
	Design Analysis: Don‘t Care Analysis
	Design Analysis: Don‘t Care Analysis
	Activity Simulation
	Activity Simulation: Forward Simulation
	Activity Simulation: Backward Propagation
	3 Evaluation Results
	Implementation
	Reports on x86-compatible processor Zet v1.3.1
	Reports on x86-compatible processor Zet v1.3.1
	Reports on RISC-V-based Murax SoC
	Reports on commercial ASIP
	4 Summary
	Summary & Future Work
	スライド番号 24

