EBERHARD KARLS” MATHEMATISCH-
UNIVERSITAT NATURWISSENSCHAFTLICHE FAKULTAT
TUBINGEN Eingebettete Systeme

GEFORDERT VOM

@
Bundesministerium
flir Bildung
und Forschung

JOINT UNDERTAKING

THING52DO

Detecting Non-Functional Circuit Activity in
SoC Designs

Asia & South Pacific Design Automation Conference 2018

15.02.2018, Dustin Peterson | University of Tuebingen | Germany

Agenda

1. Motivation: What is the benefit of determining non-functional activity?
2. Our Methodology

- Design Analysis

- Activity Simulation

3. Evaluation Results

4. Summary & Future Work

2 | Detecting Non-Functional Circuit Activity in SoC Designs

What is the benefit of determining non-functional activity?

1 MOTIVATION

3 | Detecting Non-Functional Circuit Activity in SoC Designs

The benefit of determining non-functional activity...

» When designing SoCs, a bunch of optimizations at RTL for reducing the
toggle activity in a design, like Clock Gating, Operand Isolation, ...

» Basic idea of each method: Identify under which conditions several
signals or signal groups are not needed to assure correct circuit function.

As long as S=T, all activity at A
Is cut off by the multiplexer!

G=

B =——

If division result is not needed, divider activity is redundant!

X Result Branch
Register taken?

S=T Pipelined Processor

We refer to toggle activity in a design, that is not needed for a correct
function, as being non-functional!

4 | Detecting Non-Functional Circuit Activity in SoC Designs

The benefit of determining non-functional activity...

 Commercial tools like Synopsys PrimeTime or ANSYS PowerArtist
provide activity metrics such as the toggle activity to identify design issues.
- But: Non-functional (redundant) activity needs to be identified manually!

Fowerartist

Reset Activity

Redundant ripeline Activity

Fraguéncy DEmain

Optimal Time
Interval

Pipeli ill Activity

ANSYS PowerArtist: The yellow boxes and arrows are designer knowledge and are obtained manually!

Today: Is there a chance to obtain non-functional activity automatically?

5 | Detecting Non-Functional Circuit Activity in SoC Designs

2 OUR METHODOLOGY

6 | Detecting Non-Functional Circuit Activity in SoC Designs

(A) Design Analysis.
Needs to be done
only once per design!

RTL Design

Elaboration

Netlist

Design Analysis

Simulation Graph

Activity Simulator

Methodology

Done by Synopys Design Compiler.

GTECH-based RTL netlist preserving
the original design structure including
components, ports and registers.

Offline Design Analysis leads
to a graph that is used for activity
simulation.

Activity Traces [EEEEORTREEEvINgen

(B) Activity Simulation.
Needs to be done per testbench!

7 | Detecting Non-Functional Circuit Activity in SoC Designs

Elaboration

o Starting Point: Synthesizable RTL Design
- Elaboration with Synopsys Design Compiler.

- Generation of a Verilog RTL Netlist.
» Maps statements like if, case, ... to generic boolean logic.
» Retains RTL design structure (components, registers, ports).
» Used for a formal design analysis.

K\Elaboration

module my module(CLK, A, S, X); module my module(CLK, A, S, X);
input CLK, A, S; input CLK, A, S;
output X; output X;
reg R; wire NO;
assign X =S ? R : A; GTECH_MUX2(-.A(A), -B(NO),
-S(S) -Z2CX));
always @(posedge CLK) R <= A; ¥**SEQGEN** R_reg(.clocked(CLK),
-next_state(A), -Q(NO))
endmodule;
endmodule;
RTL Design Elaborated RTL Netlist

8 | Detecting Non-Functional Circuit Activity in SoC Designs

Design Analysis: Formalizing Design

 Deriving a graph representation of the elaborated RTL netlist!

module my module(CLK, A, S, X);
input CLK, A, S;
output X; wire NO;

GTECH_MUX2(.ACA), -B(NO), .S(S), -Z(X)):
¥**SEQGEN** R_reg(.clocked(CLK), .next state(A), -Q(NO))

endmodule;
IIEEE COMPONENT | TYPE | DIRECTION DATA |TRIGGER
Nodes represent circuit /top net input
elements like component C'-K /top net input :
ports or registers S /top net input . .
R /top flip-flop - A CLK
X /top net outputt AA-SVRAS -
Edges represent functional B Fogistor Nod |_EDGE_| SOURCE | SINK |
dependencies between i egister Node | S A R
nodes CLK X | [] Net Node 1R 1) (R LE)
I {A, X} A X
S | Edge (R, X} R X
{S, X} S X

Simulation Graph

9 | Detecting Non-Functional Circuit Activity in SoC Designs

Boolean Expression Diagrams (BEDSs)

 BEDs! are a generalization of Binary Decision Diagrams (BDDs).

* Nodes can be either shannon nodes (similar to nodes in BDDs, each with low
and high outgoing high edge) or terminal nodes, but also operation nodes!

 Efficient methods for converting BEDs into full or partial BDDs are available!

_ Creating a full BDD with the _.'Z?'_._
V | Operation nodes variable order S > A> R. Al R
7N up_all ({S,A,R})
A A Full BDD with S > A > R.
A
\ 4 \ 4 A

—

J

A S S R | Shannon nodes Creating a partial

BDD with only A. l
Terminal nodes

Partial BDD with A at root.

1H. Andersen and H. Hulgaard, “Boolean expression diagrams,” Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, 1997.

10 | Detecting Non-Functional Circuit Activity in SoC Designs

Design Analysis: Don‘t Care Analysis

For each node X and each incoming edge V =2 X, a don'’t care function will be derived
D(Fx,V) = Fxy—t Q Fxy-,: Under which condition is V = X inactive? C D(Fy.V) C

Transfer function F, of X. D(X,A)

« The resulting function D(F,v) is then converted to a partial BDD with a heuristic
variable order (e.g. S > A>R) and rounded down to higher-order variables!
- Control signals have higher priority!
- Rounding eliminates conflicts between don’t care conditions (e.qg. if A is inactive
because S is true, S cannot be inactive because A==B, at the same time!)

round (S)

Rounded D(X, A) D(X,S) Rounded D(X, S)

11 | Detecting Non-Functional Circuit Activity in SoC Designs

Design Analysis: Don‘t Care Analysis

 Finally the simulation graph gets a boolean function INACTIVE for each edge
that determines under which condition a specific edge is not used.
- Something similar is done for a register: KEEPS VALUE

IIEE g
/top net input g -
CLK /top net input - g -
S /top net input - . o -
R /top flip-flop - A CLK 3 1
X /top net outputt AA-SVRAS - = -
| EDGE _|SOURCE | SINK JES
A . Register Node {A, R} A R g’ L
CLK -._.-é_i NotNoge (KR oLk R E
. S
s— | Edge (R, X} R X |8 S
{S, X} S X < 1

12 | Detecting Non-Functional Circuit Activity in SoC Designs

Activity Simulation

o Simulation Graph is now used with a VCD file to determine
functional and non-functional activity per cycle.

» Two-Phase Simulation Model:
Forward Simulation
Backward Propagation

a)
b)

VCD File

| NODE |
A
CLK
s

R
X

| NODE | 0ns | 10ns | 20ns |30ns | 40ns |8
CLK 0 1 0 1 0 g

S 0 0 1 0 0
Itop net input - - - s
/top net input]
ftop net input - - s
/top flip-flop A CLK L %
/top net output AAN=SVRAS c = =
["EDGE | SOURCE | SINK | INACTIVE f>
{A, R} A R L 3
{CLK,R} CLK R L ,‘g
{A, X} A X S =
{R, X} R X =S <

(S, X} S X L

Simulation Graph

R Written Written Written Written Written

| EDGE | Ons | 10ns | 20ns | 30ns | 40ns |cfks
Fo {A,R} Active Active Active Active Active © =
Simulation [CLK, R} Active Active Active Active Active g‘g
{A, X} Active Active Inactive Active Active = 'g
{R, X} Inactive Inactive Active Inactive Inactive
{S, X} Active Active Active Active Active
| NODE | 0ns [10ns | 20ns | 30ns | 40ns |- EEEN
R Written Written Written Written Written | & & 2
| EDGE | Ons | 10ns | 20ns | 30ns [40ns |BRE=ls
{A, R} Active Active Active Active Active ? g“é g ward
{CLK, R} Active Active Active Active Active | 'S5 2 Propagation
{A,X} Active Active Inactive Active Active | %,5 E
{R, X} Inactive Inactive Active Inactive Inactive EE S g
{S, X} Active Active Active Active Active EX=a

13 | Detecting Non-Functional Circuit Activity in SoC Designs

Activity Simulation: Forward Simulation

» During forward simulation all don‘t care functions are solved by
taking the exact values of each signal from the VCD trace.

* For each cycle, we determine:

Is a register written this cycle or does it retain its current value?
Is an edge actively read or is it inactive?

VCD File

CLK

S
R
X

| NODE | 0ns [10ns | 20ns |30ns] 40ns |
CLK 0 1 0 1 0
S 0 0 1 0 1]
IIEEE
/top net input
[top net input
/top net input = -
ftop flip-flop - A CLK L
/top net output AAN=SVRAS c
IEEE!EIHII
{A, R} A R
{CLK, R} CLK R J.
{A, X} A X S
{R, X} R X)
{S. X} S X 1

Annotated Simulation Graph

| NODE | _Ons_| 10ns_| 20ns | 30ns_| 40ns |

R Written Written Written Written Written

| EDGE | Ons | 10ns | 20ns | 30ns | 40ns |cfks
Fo . {A/R} Active Active Active Active Active § =
Simulation [CLK, R} Active Active Active Active Active %‘g
{A, X} Active Active Inactive Active Active = 'g
{R, X} Inactive Inactive Active Inactive Inactive
S, X Active Active Active Active Active
0D 1 0 1 0 40 E - >
Written Written Written Written Written | & & 2
Emmmmmm ESES
{A, R} Active Active Active Active Active ? g§§ ward
{CLK, R} Active Active Active Active Active |S535 | Propagation
{A,X} Active Active Inactive Active Active | %,5 E
{R, X} Inactive Inactive Active Inactive Inactive EE S g
{S, X} Active Active Active Active Active EX=a

Simulation Graph

14 | Detecting Non-Functional Circuit Activity in SoC Designs

Activity Simulation: Backward Propagation

» During backward propagation all information is propagated backwards in

time and space.
- Time Propagation: Remove register writes without any future read!
- Space Propagation: If a node has only non-functional outgoing edges,
mark all incoming edges non-functional!

 —

Set incoming edges All outgoing edges
inactive, too! are inactive!

VCD File

| NODE | _Ons_| 10ns_| 20ns | 30ns_| 40ns |

R Written Written Written Written Written

| EDGE | Ons | 10ns | 20ns | 30ns | 40ns |cfks

Fo . {A/R} Active Active Active Active Active § =

Simulation [CLK, R} Active Active Active Active Active g =

I - - {A, X} Active Active Inactive Active Active = 'g
We end up Wlth a CyC|e by CyC|e trace’ {R, X} Inactive Inactive Active Inactive Inactive
o x Active Active Active

which shows which registers and which

. . . Bo>
- Written Written Written Written Written | & & 2
edges are functional or non-functional in a | SECETTERTTERTIERTIENTITEY ER 44
. > > =
| {A,R} Active Active Active Active Active |Z €5 E 4 ward

parthUIar CyC|e' (CLK, R} Active Active Active Active Active |5 &< < ' Propagation
{A,X} Active Active Inactive Active Active ; & &5
{R, X} Inactive Inactive Active Inactive Inactive EE S g
{S, X} Active Active Active Active Active T2

Simulation Graph

15 | Detecting Non-Functional Circuit Activity in SoC Designs

3 EVALUATION RESULTS

16 | Detecting Non-Functional Circuit Activity in SoC Designs

Implementation

» Methodology implemented as a Scala library and integrated as a plugin into
Synopsys Design Compiler.

RTL Design

e syn_dc_plugin.tcl

Elaboration

activity simulator zet.simulator

Design Analysis

Simulation Graph
Activity Simulator Activity Traces

« Evaluation done based on a variety of open source + commercial designs:
- X86-compatible open source processor (http://zet.aluzina.orq)
- RISC-V based Murax SoC (https://github.com/SpinalHDL/VexRiscv)
- Commercial ASIP architecture

17 | Detecting Non-Functional Circuit Activity in SoC Designs

http://zet.aluzina.org/
https://github.com/SpinalHDL/VexRiscv

Reports on x86-compatible processor Zet v1.3.1

Example Design: x86 Zet

» X86-compatible open source processor design (opencores.org)
o Activity report for Zet running 19 _segpr (1 division)

This is the activity trace that we can get from recent tools (actual activity).

This is tlyéce of functional activity (our tool).

/

0 L-AAA;A schammrr Al A A AT AMM‘MMMHJ-‘J‘JL‘#‘_J‘AL_A“‘A.LAJ[AAA.LA“M,, DA A NN A S A A A AL AN AN

0 10 20 30 40 Time [us]
Difference between both curves is the non-functional activity!

e Plugin runtime for this design?:
- Design Analysis: ~25 seconds
- Simulation: ~350 microseconds per simulated cycle

18 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on x86-compatible processor Zet v1.3.1

Example Design: x86 Zet
» X86-compatible open source processor design (opencores.org)
» Sleep Mode Trace for Zet running 18 div (30 divisions)

I R

| Green: Component is active!
= White: Component is idle!

T e e e i e e

AL A RO O G TR AL RD T 00

r e,

LTI RIETEET | llllI[I”IJ.III.II. AN T

i

VR UL TR0 HSOLR TR AN Ty a i

fcorefexec/alu/muldiv/

1

Active mmmm
<
o
<
0
5x107

0 1x108 15x108 2x10° 25x10%8 w108 35x10%8
Time

19 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on RISC-V-based Murax SoC

* RISC-V-based Murax SoC (https://github.com/SpinalHDL/VexRiscv)

- RISC-V attached to an AXI bus with on-chip RAM
- 2 timers attached to an APB bus using an AXI «— APB bridge

#include <stdint.h>

fapb3Router_1

#include <murax.h>
void main() { < _ - : _ — _ ‘LM
for(int i=0; i < 100; i++); m
fsystem_timer_timerA
prescaler_init(TIMER_PRESCALER); %J
TIF’.‘ER_PRESCALE R- > = l ; o 5000 10020 15000 I":' 2%00 3000 35000
timer_init (TIMER_B); fsystem_timer, timers
TIMER_B-> = 8; o J‘ T —

TIMER_B-> = Bx00010002; ol = e —— i
while(1); o
}

Software running on the RISC-V.

Sleep Mode Traces derived by our tool.

e Plugin runtime for this design?:

- Design Analysis: ~30 min
- Simulation: ~1.5 milliseconds per simulated cycle

LIntel Core i5-3470 3.2GHz, Scientific Linux 7.4, no multi-threading implemented

20 | Detecting Non-Functional Circuit Activity in SoC Designs

Reports on commercial ASIP

« Commercial ASIP architecture in two different flavours:
- A) Implementation without functional unit clock gating
- B) Implementation with functional unit clock gating

« Evaluation of Clock Gating Efficiency of both flavours using the
Dhrystone benchmark:

(A) (B)
g | Functional Registers Active Registers |
g 1 ! l .I ! 1
3 081 : < 08
g 06 B R e --—-— 06
5 04 e - 0.4
' S mummmm
.g 0 b B ol il il Bl il B Bl e] |] |]]
2 08 082 084 086 0.88 08 082 084 08 088 09
= Time [ms] Time [ms]

* Plugin runtime for this design?:
- Design Analysis: ~15 min
- Simulation: ~3 to 5 milliseconds per simulated cycle
LIntel Core i5-3470 3.2GHz, Scientific Linux 7.4, no multi-threading implemented

21 | Detecting Non-Functional Circuit Activity in SoC Designs

4 SUMMARY

22 | Detecting Non-Functional Circuit Activity in SoC Designs

Summary & Future Work

» Developed, implemented and evaluated a ey
methodology for detecting functional and e
non-functional activity in RTL simulations.

Offline Design Analysis leads
o a graph that is used for activity
simulation,

Activity Simulation.
Needs to be done per testbench!

» Evaluated a variety of designs: an open source processor, a commercial
ASIP and a RISC-V based SoC

e Future Work
- Speed up simulation speed by either lossless graph compressions or
by losing some accuracy, for example merging N 1-bit registers into
one simulation graph node.
- Analysis of the PULPino SoC design.
- Using Sleep Mode Traces for pattern-based clustering of a design into
power domains like int.

L A. Dobriyal et al., “Workload Driven Power Domain Partitioning,” in Progress in VLSI Design and Test, 2012.

23 | Detecting Non-Functional Circuit Activity in SoC Designs

Thank you!

Dustin Peterson

Eberhard Karls Universitat Tubingen
Lehrstuhl far Eingebettete Systeme

Fon: +49 7071 - 29 — 75458

Fax: +49 7071 - 29 — 5062

E-Mail: dustin.peterson@uni-tuebingen.de

24 | Detecting Non-Functional Circuit Activity in SoC Designs

	Detecting Non-Functional Circuit Activity in SoC Designs
	Agenda
	1 Motivation
	The benefit of determining non-functional activity…
	The benefit of determining non-functional activity…
	2 Our Methodology
	Methodology
	Elaboration
	Design Analysis: Formalizing Design
	Boolean Expression Diagrams (BEDs)
	Design Analysis: Don‘t Care Analysis
	Design Analysis: Don‘t Care Analysis
	Activity Simulation
	Activity Simulation: Forward Simulation
	Activity Simulation: Backward Propagation
	3 Evaluation Results
	Implementation
	Reports on x86-compatible processor Zet v1.3.1
	Reports on x86-compatible processor Zet v1.3.1
	Reports on RISC-V-based Murax SoC
	Reports on commercial ASIP
	4 Summary
	Summary & Future Work
	スライド番号 24

