Multi-Level Timing Simulation on GPUs

Eric Schneider, Michael A. Kochte, Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering (ITI)

> University of Stuttgart Stuttgart, Germany

January 17, 2018

Timing Simulation of Nano-electronic Circuits

Delay Fault Simulation (e.g. Small Delays)

Non-Functional Properties (e.g. Power, IR-Drop)

Efficient Multi-Level Timing Simulation

- Flexible timing-accurate simulation with mixed abstractions
 - Logic and Switch Level
- High-throughput parallelization on Graphics Processing Units (GPUs)
- Variable user-defined Trade-off in speed and accuracy

Agenda

GPU-accelerated Time Simulation

- Transparent Multi-Level Time Simulation
- Experimental Results
- Conclusion

Conventional Time Simulation

- Event-driven time simulation for efficiency
 - Time-wheel implementation as cyclic list of event lists[1]
 - Requires dynamic memory management

[1] E. G. Ulrich. Exclusive Simulation of Activity in Digital Networks. Communications of the ACM, 12(2):102–110, Feb. 1969

Graphics Processing Units (GPUs)

- Single-Instruction-Multiple-Data (SIMD) processing
 - Uniform control flow of threads
- Limited device memory
 - Memory access coalescing

GPU-accelerated Logic Time Simulation

- Simple and compact data structures
 - Full signal histories (waveforms) stored as event lists

[1] Holst, Imhof, Wunderlich, High-Throughput Logic Timing Simulation on GPGPUs, TODAES, 2015.

GPU-accelerated Switch Level Simulation

- Cell behavior modeled using first-order electrical parameters
 - Switching events expressed by exponential curves

Schneider, Holst, Wen and Wunderlich, Data-Parallel Simulation for Fast and Accurate Timing Validation of CMOS Circuits, Proc. ICCAD, 2014.

High-Throughput Parallelization

- Multi-dimensional kernels
 - Gate-parallelism and waveform-parallelism

Agenda

- GPU-accelerated Time Simulation
- Transparent Multi-Level Time Simulation
- Experimental Results
- Conclusion

Regions of Interest (ROI)

Demand for areas with higher simulation accuracy

Abstraction Switching

- Logic and switch level descriptions for nodes
 - During simulation only one active abstraction per node

Waveform Event Transformation

Logic-to-Switch level

- Switch-to-Logic level
 - Threshold-based mapping to (ternary) logic symbols

Transparent Multi-Level Simulation

 Input waveform events are mapped to target abstraction level of node during processing

Simulation Flow

[1] Holst, Imhof, Wunderlich, *High-Throughput Logic Timing Simulation on GPGPUs*, TODAES, 2015.[2] Schneider. et. al. *Data-Parallel Simulation for Fast and Accurate Timing Validation of CMOS Circuits*, ICCAD, 2014.

2D-Thread Grid Organization

Threads of a SIMD group compute the same abstraction

Agenda

- GPU-accelerated Time Simulation
- Transparent Multi-Level Time Simulation
- Experimental Results
- Conclusion

Experimental Setup

- ISCAS'89, ITC'99 and industrial designs from NXP
- Simulation of random ROI scenarios
 - Varying ROI count and distribution
 - I0-detect transition delay fault test set by ATPG
- Intel® Xeon® @3.0GHz, 8 cores, 128GB RAM
- NVIDIA® Tesla® K80 @875MHz, 2x2496 cores, 2x12GB

Simulation Runtimes

		C E ^v	Commercial Event-Driven		Proposed GPU-accelerated		
Circuit	Nodes*	Pattern- Pairs	T _{logic}	T _{logic}	MEPS _{log}	T _{switch}	MEPS _{swi}
s38584	23053	563	5.49s	51ms	254	266ms	49
b18	125305	3174	0:13h	922ms	431	9.69s	41
b19	250232	4651	0:41h	2.62s	444	27.36s	43
p533k	676611	3417	2:28h	5.33s	434	51.73s	45
p951k	1090419	7063	4:18h	24.20s	318	2:06m	61
p1522k	1088421	17980	12:34h	50.60s	387	6:03m	54
p2927k	1672479	22107	28:54h	1:41m	366	0:11h	56
p3881k	3691849	12092	27:31h	2:18m	323	0:13h	57

*input, output and cells

MEPS: Million node evaluations per second =

#Nodes ·#PatternPairs T ·10⁶

Simulation Speed-up

 $T_{\underline{ref}}$ SpeedUp = T_{GPU}

Amount of Active ROIs (ascending)

Runtime Savings

Savings compared to **full switch-level** simulation

22

Conclusion

- First Multi-Level Timing Simulation on GPUs
 - High-Throughput parallelization
 - Increased accuracy in arbitrary regions of interest
 - Transparent waveform transformation
- Scalable for millions of cells
- Speedups up to three orders of magnitude
 - Up to 444M evaluations per second
- Runtime savings of up to 89% compared to full switch-level simulation

