

1

An Optimal Gate Design for the Synthesis of Ternary Logic Circuits

Jan. 24, 2018

Sunmean Kim, Taeho Lim, Seokhyeong Kang

CONTACT

Ulsan National Institute of Science and Technology School of Electrical Engineering System on Chip Design Lab Tel. +82 52 217 2182 **Web.** http://soc.unist.ac.kr

CONTENTS

03

09

14

I. Introduction - Why MVL?

II. Ternary Logic - Facing Problem

III.Methodology - Optimal Gate Design **IV. Circuit Design - Proposed Ternary Gate 25**

V. Simulation - Efficiency of Method 30

VI.Conclusion

34

I. Introduction

- Why MVL?

Post Moore's Law

- **Performance gap is increasing and scaling is slow down.**
- **We don't know if the density can be still scaling.**

4

Multi-Valued Logic (MVL)

- **MVL is a logical calculus which have more than two truth values.**
- **MVL circuit designed to use more than two discrete levels.**
- **Digit size and noise margin are a trade off relationship.**

Example of MVL

- **Solid-state Drive (SSD) and NAND flash memory are example of MVL.**
- **SLC (Single Level Cell), MLC (Multi Level Cell), and TLC (Triple Level Cell).**
- **Binary logic (1 bit), Quaternary Logic (2 bit), and Octal Logic (3 bit).**

Multi-Valued Circuit

Number of Cell : 6 × 6 Digit Size : 1 bit

Binary Circuit Multi-Valued Circuit

Number of Cell : 3 × 4 Digit Size : 3 bit

- **MV circuit can process the same amount of calculation in a smaller size.**
- **The number of cells, pins, and interconnects are reduced.**
- **It is possible to overcome the limitation of binary circuit.**

MV Logical Operation

- **MVL operations are a superset of standard boolean logic.**
- **NOT, AND, and OR operation in binary logic.**
- **NOT, MIN, and MAX operation in Multi-Valued logic.**

II. Ternary Logic

- Facing Problem

Ternary Logic & Circuit

- **Ternary logic is a first step of Multi-Valued logic.**
- **Ternary devices are studied to realize Multi-Valued digital circuits.**
- **Carbon nanotube FET (CNTFET), Ternary CMOS (T-CMOS), etc.**

2 & 3 Valued Logical Operation

- **Binary logic has 16 (=2^2^2) logical operations.**
- **There are two types of ternary logic depending on the truth value.**
- **Ternary logic has 19,683 (=3^3^3) logical operations.**

Binary Logical Operation

• **INV, NAND, NOR, XOR 2-stage cascade**

• **16 binary logical operations are implemented with simple circuits.**

Ternary Logical Operation

- **All ternary logical operations can be designed with STI and NMIN.**
- **Only 1% of ternary logical operations are designed as 2-stage cascade.**
- **For efficient design of ternary circuit, more logic gates are needed.**

III. Methodology

- Optimal Gate Design

Optimal Gate Design Flow

- **Design flow of the SUM gate for balanced ternary half adder**
- **1. Building pull-up/down switching tables from the ternary truth table**
- **2. Converting to a SOP expression, generating an optimal gate circuits**

Ternary Devices

- **11** The operation of ternary devices same ω the gate voltage = V_{DD} , GND.
- **The operation of ternary devices differ** ω **the gate voltage = half** V_{DD} **.**
- **CNTFET uses two different diameter for different ON/OFF states.**

Generalized Structure of Static Ternary Gate

- **Generalize the structure of static ternary gate based on STI [6].**
- **V**_{DD}**/GND** path generate logical 0 (GND) and logical 2 (V_{DD}).
- **Half** V_{DD} path is attached to generating logical 1 (half V_{DD}).

1 1

Ternary Gate Design Methodology

- **By input gate voltage (0, 1, 2), define different switching operations.**
- **Each switching operation have operator and P-type/N-type transistor.**
- **Use P-type/N-type ternary devices for pull-up/pull-down network.**

• Switching table of V_{DD}/GND path (STI)

- **Output** = $2 \rightarrow$ Pull-up = 1 (ON-state), Pull-down = 0 (OFF-state)
- **Output** = $1 \rightarrow$ Pull-up = 0 (OFF-state), Pull-down = 0 (OFF-state)
- **Output** = $0 \rightarrow$ Pull-up = 0 (OFF-state), Pull-down = 1 (ON-state)

- **Output** = $2 \rightarrow$ Pull-up = X (don't care), Pull-down = 0 (OFF-state)
- **Output** = $1 \rightarrow$ Pull-up = 0 (ON-state), Pull-down = 0 (ON-state)
- **Output** = $0 \rightarrow$ Pull-up = 0 (OFF-state), Pull-down = X (don't care)

• **Sum of Product expression of switching table (STI)**

- **Convert from switching table to Sum of Product expression.**
- $1*A_0 + 0*A_1 + 0*A_2$ @ Pull-up network
- $0*A₀ + 0*A₁ + 1*A₂$ @ Pull-down network

• **Don't care condition in SOP expression (STI)**

- **Consider don't care condition to design a smaller circuit.**
- $X=1$ @ Pull-up circuit $\rightarrow 1*A_0 + 1*A_1 + 0*A_2 \rightarrow 1$ transistor (Better)
- $X=0$ **@** Pull-up circuit $\rightarrow 0^*A_0 + 1^*A_1 + 0^*A_2 \rightarrow 4$ transistor (Worse)

Ternary device switching table

• **Minimization of SOP expression (STI)**

• **When design a complex ternary gate, it is necessary to minimize the**

SOP expression of switching table.

• **Use Q-M method to minimize a SOP expression.**

• **Single input gate design (STI)**

• **Finally, synthesize the circuit by mapping the transistor corresponding**

to each operator of the SOP expression in the device switching table.

• **Multi-Input gate design (SUM gate)**

 Ω

 Ω

-1

 θ

1

 Ω

0

 θ

 Ω

1

 $\overline{2}$

Given Truth table

of SUM gate

 Ω

 $\mathcal{D}_{\mathcal{A}}$

2

 $\overline{2}$

 θ

1

2

 Ω

 V_{DD}/GND path $Pull - up : A_0 * B_2 + A_1 * B_1 + A_2 * B_0$ VDD/GND path - Half VDD path - $Pull-down: A_0 * B_0 + A_1 * B_2 + A_2 * B_1$ \mathbf{I} Ω $\overline{2}$ Pull-up table $Half V_{DD} path$ X Ω $\mathbf{1}$ Ω Ω $Pull-up : A_0 * (B_1 + B_2) + (A_1 + A_2) * B_0 + A_2 * B_2$ X Ω Ω 1 $Pull-down: A_0*(B_0+B_1)+(A_0+A_1)*B_0+A_2*B_2$ X Ω θ Ω $\overline{}$ A $\overline{}$ A $\overline{}$ A $\overline{}$ A $\overline{}$ B $\overline{}$ $B \triangleleft \Box B \triangleleft \Box B_{\overline{P}} \triangleleft \Box B_{\overline{P}} \triangleleft \Box A_{\overline{P}} \triangleleft \Box$ D θ $\overline{2}$ Pull-down table θ Ω θ Ω X 1 $\boldsymbol{\mathrm{X}}$ Ω 1 Ω -1 A_{p} X θ Ω $B - \left\| \prod_{r=1}^{N} B_{N} \right\| \left\| \prod_{r=1}^{N} B_{r} \right\| \left\| \prod_{r=1}^{N} B_{N} \right\|$ Generated switching table

• **The methodology of a single input gate design can be applied to gate**

designs with more than two inputs.

IV. Circuit Design

- Proposed Ternary Gate

Previous Ternary Full Adder Design

- **Capacitor based Design [10] MUX based Design [7]**
-

- **Capacitor based design have worse power, speed, and area.**
- **MUX based design have worse power, speed and noise margin.**

Standard Ternary Full Adder

- **Ternary half adder consists of one SUM gate and one NCARRY gate.**
- **Ternary full adder consists of two half adders and NANY gate.**

Balanced Ternary Full Adder

- **Signed ternary full adder is implemented without a sign trit.**
- **It is necessary for efficient design of signed ternary arithmetic logic.**

V. Simulation

- Efficiency of Method

Simulation Condition

- **SYNOPSYS HSPICE circuit simulator are used.**
- **CNTFET compact model and it's default parameter are used.**
- **Transistor sizing is not applied.**
- **Operation voltage (V_{DD}) is 0.9 V.**
- **Transition time is 10 ps.**
- **Calculated characteristic using input patterns of [11].**
	- **Worst delay**
	- **Average power**
	- **Power delay product (PDP) = worst delay * average power**
- **Previous designs were simulated in the same simulation environment.**
- **Simulation results were normalized based on the proposed design.**

Flow Chart & Function Table

Ternary Full Adder

Design	Load Cap. (fF)	Normalized Delay	Normalized Power	Normalized PDP
$[10]$	2	1.58	16.98	27.02
[10]	3	1.30	17.05	22.31
$[11]$	$\overline{2}$	0.93	5.90	5.49
$[11]$	3	0.66	6.15	4.06
$[7]$	$\overline{2}$	0.71	2.76	1.96
$[7]$	3	0.73	2.70	1.98
Proposed	$\overline{2}$	1.00	1.00	1.00
Proposed	3	1.00	1.00	1.00

TABLE II COMPARISON OF TERNARY FULL ADDER DESIGN

- **Power-delay-product (PDP) of ternary full adder is reduced by 49.24 %.**
- **Because it is an optimal static gate, power consumption is very low.**
- During voltage dividing (half V_{DD}), the delay of static gate increases.

Ternary Multiplier

- **We design a ternary multiplier using our methodology.**
- **Power-delay-product (PDP) of ternary multiplier is reduced by 61.78 %.**
- **When using T-CMOS, # of tr. is reduced by 50% compared to CMOS.**

VI. Conclusion

FN

Conclusion

- **We propose an optimal gate design methodology for the synthesis of ternary circuits.**
- **We have modeled the characteristics of emerging ternary devices.**
- **Our proposed methodology can be applied to emerging devices that support ternary logic (e.g., CNTFET, T-CMOS).**
- **Our proposed methodology can be applied to not only standard ternary logic but also balanced ternary logic.**

THANK YOU

ЕN