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l. Introduction



Post Moore’s Law
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* Performance gap is increasing and scaling is slow down.

* We don’t know if the density can be still scaling.

Source: Todd Austin, ICCAD 2018  *



Multi-Valued Logic (MVL)

Binary Logic Ternary Logic
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e MVLis alogical calculus which have more than two truth values.
* MVL circuit designed to use more than two discrete levels.

* Digit size and noise margin are a trade off relationship.




Example of MVL

i

e Solid-state Drive (SSD) and NAND flash memory are example of MVL.
e SLC (Single Level Cell), MLC (Multi Level Cell), and TLC (Triple Level Cell).

e Binary logic (1 bit), Quaternary Logic (2 bit), and Octal Logic (3 bit).
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Multi-Valued Circuit

Binary Circuit Multi-Valued Circuit
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Number of Cell : 6 x 6 Number of Cell : 3 x 4
Digit Size : 1 bit Digit Size : 3 bit

MV circuit can process the same amount of calculation in a smaller size.
 The number of cells, pins, and interconnects are reduced.

* Itis possible to overcome the limitation of binary circuit.




MV Logical Operation

A A )
B B
Aor B I
Aand B not A
AND OR NOT
min{A,B) max(A,B) (1-A)

Aor B
not A
A and B

MVL operations are a superset of standard boolean logic.

NOT, AND, and OR operation in binary logic.

NOT, MIN, and MAX operation in Multi-Valued logic.




ll. Ternary Logic



Ternary Logic & Circuit
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 Ternary logic is a first step of Multi-Valued logic.
* Ternary devices are studied to realize Multi-Valued digital circuits.

e Carbon nanotube FET (CNTFET), Ternary CMOS (T-CMOS), etc.

L V.
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[5]S. Shin et al., IEEE Trans. of Electron Devices, 2015



2 & 3 Valued Logical Operation

16
Binary | |
{ Logic 01 Logical Operation

(INV, NAND, NOR)

= — 0 1 2 19,683
ernar
{ : y —— Logical Operation
Logic
— -1 0 1 (INV, NMIN, NMAX)
[ “

* Binary logic has 16 (=272/72) logical operations.
 There are two types of ternary logic depending on the truth value.

* Ternary logic has 19,683 (=373/3) logical operations.
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Binary Logical Operation
o

01 —
2-stage B

GND AND(A, B) NOR(A", B) BUF(A) NOR(A, B)
0|0 00 00 00 011
00 0|1 110 111 00
VDD NAND(A, B) NAND(A, BY) INV(A) NAND(A', B)
111 111 111 111 110
1|1 110 0|1 00 111

Cascade A —

W AND(A, B)
_)o— NAND(A, B")

OR(A, B)

BUF(B) XOR(A, B)
011 0|1
0|1 110
INV(B) XNOR(A, B)
110 110
110 0|1

* [NV, NAND, NOR, XOR > 2-stage cascade

* 16 binary logical operations are implemented with simple circuits.




Ternary Logical Operation

~ A
Less than 1% ! 2-stage B—W MIN(A, B)

—

C d _
ascade B‘[>OA——>_ NMIN(A, B")

In [Out 0O11]2
19,683 Tt 2 c R
; ernarjy m Simple 1)1 11211
Logical Operation
: 210 2121110
Complicate
STI NMIN

* All ternary logical operations can be designed with STl and NMIN.

* Only 1% of ternary logical operations are designed as 2-stage cascade.

* For efficient design of ternary circuit, more logic gates are needed.

\ V.
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lll. Methodology



Optimal Gate Design Flow

Truth table Pull-up table Synthesized Gate
=
4 A
A A B
B B4 % B
Y

AF A B

E — —
{ A B
B> A

<

* Design flow of the SUM gate for balanced ternary half adder
1. Building pull-up/down switching tables from the ternary truth table

2. Converting to a SOP expression, generating an optimal gate circuits

15
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Ternary Devices

Gate voltage = Vpp/2

D D
G—O[I l::s‘ ON state G—O[I l:ik OFF state
Vi =028V Charer E CNTRET Vin = 0.559 V
G—[I l:; ON state G—[”:%K‘ OFF state
S S
- w

* The operation of ternary devices same @ the gate voltage =V, GND.
* The operation of ternary devices differ @ the gate voltage = half V.
* CNTFET uses two different diameter for different ON/OFF states.

L V.
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[6] J. Deng et al., IEEE Trans. of Electron Devices, 2007



Generalized Structure of Static Ternary Gate

Half VDD path

e————————————— —.—
1

pull-up i Inputs
network 1 i

d|[C (13.0)

VDD/GND path

pull-up
network 2

Output

pull-down EIHPUtS
' | network 1 |

pull-down
network 2

— Standard Ternary Inverter [6] —

my

A—9||1.487 nm

I 0.783 nm
1.018 nm Aﬁ”

IE j Output

1.018 nm
! :I A*H 0.783 nm

1.487 nm

g

In {Out
0|2
111
210

Generalize the structure of static ternary gate based on STI [6].

V,,/GND path generate logical 0 (GND) and logical 2 (V).

Half V, path is attached to generating logical 1 (half V).

V.

[6]S. Lin et al., IEEE Trans. of Nanotechnology., 2011
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Ternary Gate Desigh Methodology

2 Ternary device switching table
Half VDD path VDD/GND path =0 0 e e
. Pull-u - -

ulti-up I 9 I Iy Ip -0

0289V
1.487 nm

network |oas0r UM fossor HM fo2so
1.487 nm 0.783 nm 1.487 nm

o

Inputs 1
(19, 0) ~ J (19, 0) J (19, 0) J (10,0)

1

Inputs; | pull-up
network 2

pull-up
network 1

Pull-down Ip — Iy I [ —

network fo,67 U] foasor M) fosor 0ss9p U
Outp 1.487 nm 1.487 nm 1.487 nm 0.783 nm

1

i

|

i

i

|

I * o .

i ﬂ Switching operation
E Input=0 | ON state | ON state | OFF state | OFF state
1

i

i

|

JTL|TC

Inputs Inputs: | pull-down

network 2

pull-down

network 1 Input =1 ON state | OFF state | ON state | OFF state

Input =2 | OFF state | OFF state | ON state | ON state

Operator AytA, Ay A vA, 4,

* By input gate voltage (0, 1, 2), define different switching operations.
* Each switching operation have operator and P-type/N-type transistor.

* Use P-type/N-type ternary devices for pull-up/pull-down network.
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Example of Ternary Gate Design

« Switching table of V5/GND path (STI)

VDD/GND Path ON=1 OFF=0
: < Lo NOFF
1 0 Floating
0 0 1 (Y:].)
Given 4
Truth Table {OFF
Generate For
ll-up/d > V/pp/GND : _
S\F:\:Jitc#i?mg (t)aV\éTe path Operation of Pull-up/down @ each Qutput condition
[ 1

e OQOutput =2 - Pull-up = 1 (ON-state), Pull-down = 0 (OFF-state)
e OQOutput =1 - Pull-up = 0 (OFF-state), Pull-down = 0 (OFF-state)

* Output =0 = Pull-up = 0 (OFF-state), Pull-down = 1 (ON-state)

19



Example of Ternary Gate Design

« Switching table of Half V5 path (STI) X = don’t care
VDD/GND Path Half VDD Path i ID , . i ;R
ont A4} :oN A-| N OFF

2

1

0

Given

Truth Table i i
Generate For A XOFF A—:% :ON

pull-up/down Vp/GND — \'jor ';:t'; | _i
switching table path DD

A 4

é )

e OQOutput =2 - Pull-up = X (don’t care), Pull-down = 0 (OFF-state)
e OQOutput =1 - Pull-up = 0 (ON-state), Pull-down = 0 (ON-state)

e Output =0 = Pull-up = 0 (OFF-state), Pull-down = X (don’t care)
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Example of Ternary Gate Design

« Sum of Product expression of switching table (STI)

VDD/GND Path Half VDD Path Voo /GND path

Pull —up: 0% (A; + Az) + 1% Ag

2 } 1 0 } Pull — down : 0% (Ag + A1) + 1% Ay
| 0 0 4
0 01
Given 4  Generated 4
Truth Table switching table
Generate
| For | ForHalf | |  Convertto
pull-up/down " Voo/GND —> |, ath " SOP exoression
switching table path bD P

e

* Convert from switching table to Sum of Product expression.
* 1*A,+0*A, + 0*A, @ Pull-up network

* 0*A,+0*A, +1*A, @ Pull-down network

21




Example of Ternary Gate Design

oy . . Ternary device switching table
« Don’t care condition in SOP expression (STI) A eiscisias :
E (19,0) N J (19,0) _J =
Pull-up 3 | o I
VDD/GND Path Half VDD Path VDD/GND path network E | —l - ?I 1
a 1:487 nm 1;87 nm
Pull —up: 0% (A; + A2) + 1 Ag as,o) o Jasoy
2 1 1lo Pull-down L — - I -
} } Pull —down : 0% (Ag + A1)+ 1x Ay | network 0289]; 1 Loass A
1 O 0 1.487 nm 1.487 nm
Half Vpp path
0 ol 1 Switching operation
Pull—up:O*A2+1*(A0+A1)I ...................... .
Given 4  Generated 4 4 Input =0 § ON state | OFF state [
Truth Table switching table Pull 1 down : 0% Ap + 1 % (A1 + Az) :
Input =1 § ON state | ON state |
Generate =2 :
pu”_up/down N F/Cc);rND R For Half R Convert to Input =2 § OFF state | ON state [
. - bo th VDD path SOP eXpreSSIOI’] Operator A+A A, +A
switching table pa ot A 174;
é N

* Consider don’t care condition to design a smaller circuit.
* X=1 @ Pull-up circuit 2 1*A, + 1*A, + 0*¥A, - 1 transistor (Better)

* X=0 @ Pull-up circuit 2 0*A, + 1*A, + 0*A, = 4 transistor (Worse)

22



Example of Ternary Gate Design

* Minimization of SOP expression (STI)

VDD/GND Path Half VDD Path Voo /GND path

Pull—up:0*(A1+A2)+1*A0:A0

2 } 1 0 } Pull —down : 0% (Ag + Aq) + 1x Ay = Ay
l 010 Half Vipp path
0 011 Pull —up: 0% Ag + 1% (Ao + A1) = Ao + A,
G' A G t d A
Truth Table switching table _fi%el_l__—_T_f%???f?_a_Q_if__f}_o_f__l__*f_ﬁf_‘%_l_f_il_z).= 4_1__%_42_
Generate .
| For | ForHalf | |  Convertto | Minimized by
pull-up/down " Voo/GND — " sop : > M method
switching table path op P expression Q-M metho
4 Y

* When design a complex ternary gate, it is necessary to minimize the
SOP expression of switching table.

 Use Q-M method to minimize a SOP expression.
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Example of Ternary Gate Design

« Single input gate design (STI)

Ternary device switching table

Vop/GN D path

19,0 10,0 19,0 19,0 A
Pull-u R [ il S 7 Pull —up : 0% (A + A2) +1x Ay = Ag _<{| A
t 1:1’( I -0 I Iy I, ©
networ L , 7 1
] (T [ M S Pull _down 0x (ot A) H1x A4
(19,0) ~ (19,0) (19,0) (10, 0) ~
Pull-down L — = I - 1 = [ — = Hal Vpp path A
P N
network ;g5 L ™ fozasor  HT) ozsor T fossor HIT Pull —up: 0% Ay + 1% (Ag + A= Ao + Ay -
1.487 nm 1.487 nm 1.487 nm 0.783 nm Synthesized
Pull — down : 0% Ap+ 1% (A + Ag) = A1 + A oui
Switching operation ---I-L----T---(-)-l% ----- *0+*(1+2) 1_}2 Circuit
Input=0 | ON state | ON state | OFF state | OFF state
tiout= 1 | ON state | OFF state | ON state | OFF stat Convert to Minimized by _[Transistor Mapping
nput = state state state state . > . -
P SOP expression Q-M method Using Device Table
Input=2 | OFF state | OFF state | ON state | ON state
Operator AgtA, A, A;+A, A4,
* Finally, synthesize the circuit by mapping the transistor corresponding

to each operator of the SOP expression in the device switching table.
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Example of Ternary Gate Design

* Multi-Input gate design (SUM gate)

— VDD/GND path— Half VDD path

!
=N
0 —
=
011710 3
o
1100

w
=N
1lo]o o

Given Truth table §
of SUM gate 010711 =
=N

01110 o

Generated switching table —l

Vop/GND path

Pull —up : Ay x By + Ay x By + As % By
Pull — down : Ay * By + A1 % By + Az x By
Half Vpp path
Pull—up : Agx (By+ Ba) 4+ (A1 + Ag) % Bg + Ag x B
Pull—down : Agx(Bo+B1)+(Ao+ Ay )*Bo+A2x By

designs with more than two inputs.

 The methodology of a single input gate design can be applied to gate

25




IV. Circuit Design



Previous Ternary Full Adder Design
 Capacitor based Design [10] <+ MUX based Design [7]

Area increasing exponentially

Deyr=0.783nm
1.096
i ﬂ%ﬂ : A
A — s 1
C 1.018 £ : : A
B} = 1.487 nm 1487 an A2
1 2,470
l:-‘iu_”_ B
/ —[J 1.096 25 \ S—cﬂ 1.487 nm Al —
0.626= = Sp —o|] T487 nm
A2 N SUM
“Tr = 100 Not a s
r' =. . A87 nm Ai
Static STI
. L7 o AZ
0.783 nm
1 A —
Al —

Couldn’t build 3-stage only using MUX B

1,4,13,40,121 ..

Capacitor based design have worse power, speed, and area.

MUX based design have worse power, speed and noise margin.

[7] B. Srinivasu et al., IEEE TCAS-12017 [10] M. H. Moaiyeri et al., Nano-Micro Lett. 2011
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Standard Ternary Full Adder

SUM gate

B[ B

SUM gate

SUM sum

B

AwﬂE A-CHEAP@H A-omfl B AwﬂE
Bl Bedl Al B

AN«ﬂ[j
BNﬂ[“i

suM | H {JCARR
O—carry
A
[JCARR

NCARRY gate

i
A A Al ac]E A

slEedl

B—HE
A

Ternary full adder

Half adder Full adder
# of tr. =50 #of tr. =110

NCARRY gate

NANY gate

NANY gate

AﬂiBﬂﬁAﬂﬁ Al BE adC
B y B«:|]Y

B

Bl B A B A

Ternary half adder consists of one SUM gate and one NCARRY gate.

Ternary full adder consists of two half adders and NANY gate.
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Balanced Ternary Full Adder

C SUM sum

Em
O—carry
A

Ternary full adder

B— SUM |

A— [JCARR

Full adder
#of tr. =118

Half adder
# of tr. =50

NCARRY gate SUM gate

NANY gate

1(-1]0
(101
0|11
1(0]0
0j01]o0
0]0(-1

SUM gate

A4 A*‘HE ﬁ a4 B[ a4
A BeC A Al asdC B

By Byq[” By

By By By
Arf BH]E% Ar| A B
B A B0 Al B A
NCARRY gate Y NANY gate
adl B0 ad A< a4l B p A%]EA*’HE
B*’ﬂ LB B B

Yn s 5]
Aﬂﬁm H]ﬁ A A ﬁﬁ H]EH]E

e Signed ternary full adder is implemented without a sign trit.

* Itis necessary for efficient design of signed ternary arithmetic logic.
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V. Simulation
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Simulation Condition

~N

* SYNOPSYS HSPICE circuit simulator are used.

* CNTFET compact model and it’s default parameter are used.

* Transistor sizing is not applied.

* Operation voltage (V) is 0.9 V.

* Transition time is 10 ps.

e Calculated characteristic using input patterns of [11].

- Worst delay

- Average power

-  Power delay product (PDP) = worst delay * average power

* Previous designs were simulated in the same simulation environment.

\° Simulation results were normalized based on the proposed design. y

[11] P. Keshavarzian et al., CSSP 2014 =



Flow Chart & Function Table

FUNCTION OF TERNARY LOGIC GATE

Truth table of Logic Design Gate Function

ternary logic

>
NCARRY NamwMB)={L A+B=3
Generate pull-up Generate pull-down Full adder 2, otherwise
switching table switching table
Unsiened 0, A=B=2
¢><¢ e NANY |NAny(4,B)={2 ~ A#2andB#2
ernary logic 1, otherwise
Generate switching table Generate switching table PRODUCT Prod(A.B) = (A- B d3
of Half VDD path of VDD/GND path rod(4,B) = (4-B)mo
Multiplier
1, A=B=12
L ¢ CARRY | Prod Carry(4,B) = { 0. otherwise
Convert to. | ‘ Wei,glclt to , -1, A+B>1
SOP expression AgtA;, “A;+A, SUM sum(A,B) =4 1, A+B < —1
i A+ B, otherwise
— 3 -1, A=B=1
er;[nmze;l1 b(i/ Ternary Device Signed Full adder | NCARRY |NCarry(A,B) =1 1, A=B = -1
Q-M metho Switching Table ternary logic 0, otherwise

-1, A+B>0

NANY NAny(4,B) =1 1, A+B <0
Select transistor from , otherwise
Device Switching Table
Multiplier | PRODUCT Prod(4,B) =A-B

End 3 2



Ternary Full Adder

TABLE II

COMPARISON OF TERNARY FULL ADDER DESIGN

Normalized PDP of Ternary Full Adder

Desi Load Cap. | Normalized | Normalized | Normalized 30.00 -
esigh (7F) Delay Power PDP ' Co=2/F CL=3/F
[10] 2 1.58 16.98 27.02 25.00 - PDP ~49%
[10] 3 1.30 17.05 22.31 20,00 reduction
[11] 2 0.93 5.90 5.49
500 @ CNTFET
[11] 3 0.66 6.15 4.06 vs. CNTEET
7 2 0.71 2.76 1.96 10.00 -
[7] 3 0.73 2.70 1.98 S0 -
Proposed 2 1.00 1.00 1.00
0.00 -_- -_-_
Proposed 3 1.00 1.00 1.00 [10]  [11]  [7] Proposed [10] [11]  [7] Proposed
4 N
 Power-delay-product (PDP) of ternary full adder is reduced by 49.24 %.
* Because it is an optimal static gate, power consumption is very low.
* During voltage dividing (half V;), the delay of static gate increases.
\_ .
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Ternary Multiplier

Transistor count of multi-digit multiplier

4500
TABLE III 4000 A # Tr. Binary logic
COMPARISON OF TERNARY MULTIPLIER DESIGN 1500 . CMOS
; — T — ~50% reduction
. Load Cap. | Normalized | Normalized | Normalize
‘= 3000 A
Design (/) Delay Power PDP § @ CMOS vs. T-CMOS
S 2500 |
[7] 2 1.03 2.63 2.71 9
2 2000 1
[7] 3 1.02 2.47 2.53 g
= 1500 A
Proposed 2 1.00 1.00 1.00
1000 - Balanced
Proposed 3 1.00 1.00 1.00 Ternay Logic
500 A T-CMOS
PDP ~61% reduction 0 S ——
@ CNTFET vs. CNTFET 2 4 8 16 32 .64?- .128 256 512 10242048
Digit size
( )

 We design a ternary multiplier using our methodology.
 Power-delay-product (PDP) of ternary multiplier is reduced by 61.78 %.

When using T-CMOS, # of tr. is reduced by 50% compared to CMOS.
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VI. Conclusion



Conclusion
-

« We propose an optimal gate design methodology for the

synthesis of ternary circuits.

* We have modeled the characteristics of emerging ternary

devices.

 Our proposed methodology can be applied to emerging

devices that support ternary logic (e.g., CNTFET, T-CMOS).

 Our proposed methodology can be applied to not only

_ standard ternary logic but also balanced ternary logic.

)
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