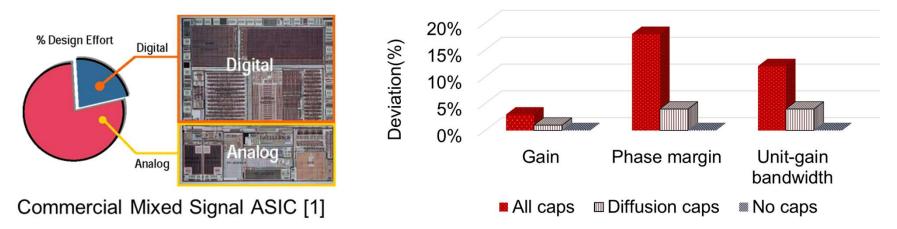


Department of Electrical Engineering, National Central University Electronic Design Automation Laboratory (EDA LAB)

Performance-Preserved Analog Routing Methodology via Wire Load Reduction

Hao-Yu Chi¹, Hwa-Yi Tseng¹, Chien-Nan Jimmy Liu¹, Hung-Ming Chen²

Dept. of Electrical Engineering, National Central University, Tao-Yuan City, Taiwan, ROC¹ Institute of Electronics, National Chiao Tung University, Hsin Chu, Taiwan, ROC²



- Introduction
- Problem Formulation
- Algorithm
- Experimental Results
- Conclusion

- Introduction
- Problem Formulation
- Algorithm
- Experimental Results
- Conclusion

Analog Design Flow

- Advance process makes analog components more sensitive
 - Layout effects impact circuit performance [2]

Analog EDA tools need to be enhanced to deal with non-ideal effects

[1] R.A Rutenbar, "Design Automation for Analog: The Next Generation of Tool Challenges" 1st IBM Academy Conference on Analog Design, Technology, Modeling and Tools, IBM T.J. Waston Research Labs 2006

[2] A. Agatwal, et al., "Fast and accurate parasitic capacitance models for layout aware synthesis of analog circuits", in Proceedings DATE, 2000.

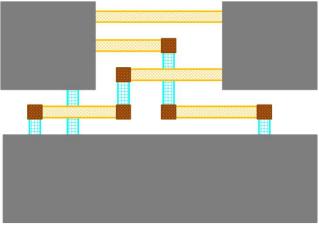
Analog Layout Design

- Impact circuit performance significantly
 - Topology constraints
 - Parasitic effects
- How to keep the performance during layout
 - Placement

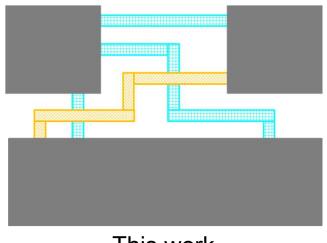
Topology constraint (ex. symmetry, proximity)

➢Routing

Parasitic effects(ex. wire length, via numbers)


Topology constraint (ex. symmetry)

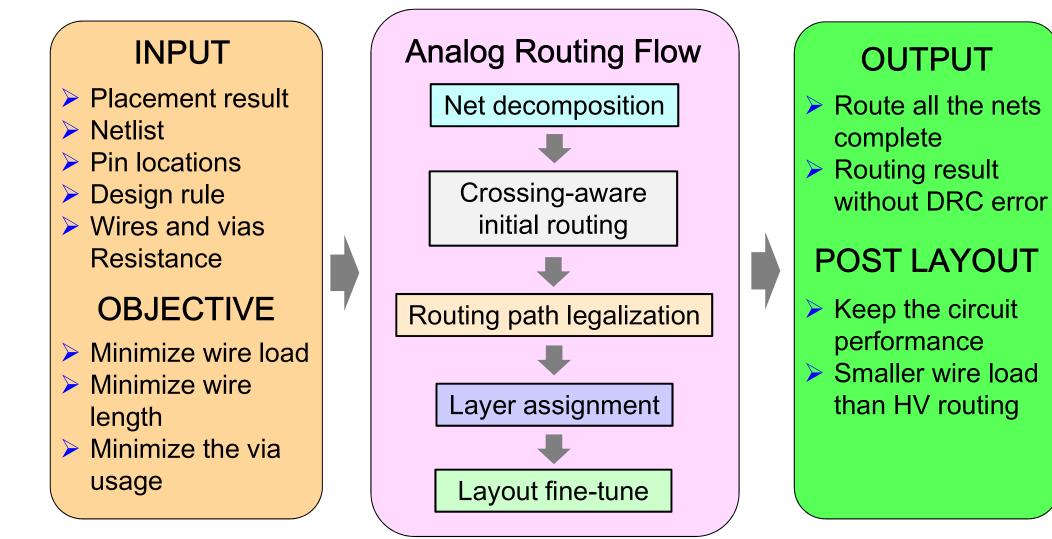
Traditional Routing Methodology


- Suitable for analog circuits?
 Have lots of via in a single net
 More via, more resistance
- Routing Method Comparison
 - Post-layout result fails to meet the spec

□Two-stage OPA in 0.18µm

	Spec	Pre-sim	HV	This work
Gain(dB)	>80	81.8	77.7	80.5
GB(MHz)	>20	22.2	19.8	21

ΗV

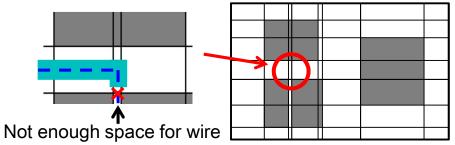


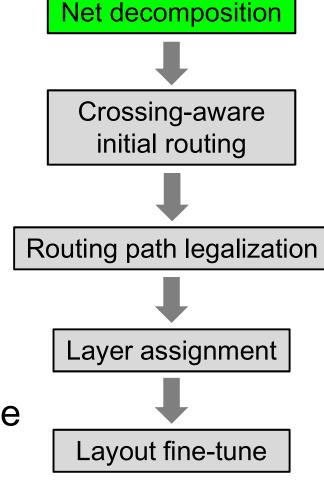
Contribution

- Present an analog routing method with wire resistance consideration
 - Propose a crossing-aware initial routing
 - Propose an analog routing algorithm considering wire load as well as wire length
 - Propose a resistance minimization method in layer assignment stage
- Post-layout performance is improved to HV result

- Introduction
- Problem Formulation
- Algorithm
- Experimental Results
- Conclusion

Problem Formulation




- Introduction
- Problem Formulation
- Algorithm
- Experimental Results
- Conclusion

Net Decomposition

- Routing Graph Construction
 - > Build G by obstacle boundaries
 - >Analyze $g_{i,j}$ width and length

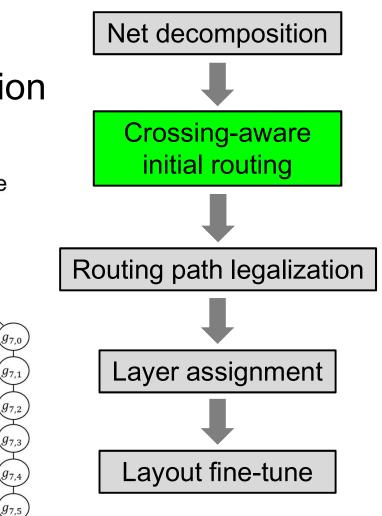
• Break multi-terminal into 2 pins

>Use FLUTE[4] generate Steiner tree

> Move Steiner points out of obs.

[4] C. Chu and Y. C.Wong, "FLUTE: Fast Lookup Table-based Rectilinear Steiner Minimal Tree Algorithm for VLSI Design," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2008.

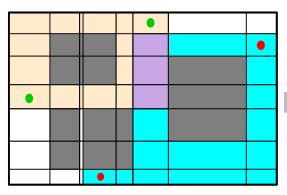
Crossing-Aware Initial Routing (1/2)

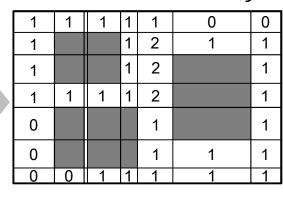

g_{7,2}

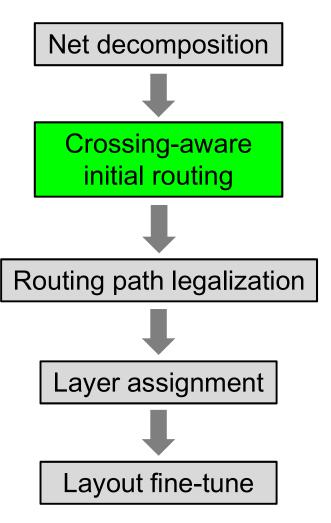
g_{7,3}

g_{7,4}

- Weighted Lee Algorithm
 - Search all possible routing solution

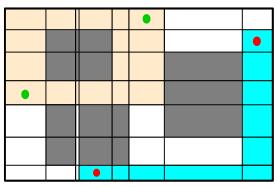

15	14	12	11	10	6	2	<i>g</i> _{7,5}
16			10	9	5	• *	107,5
			11	10		2	
16	15	13	12	11		3	
				12		4	
				13	9	5	
		7	15	14	10	6	
	$g_{3,0}$	/					

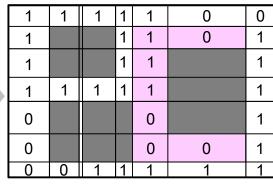


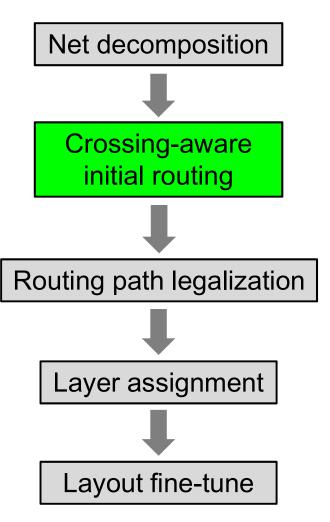

Crossing-Aware Initial Routing (2/2)

Calculate Routing Occupancy

 \geq How many nets will pass this $g_{i,j}$

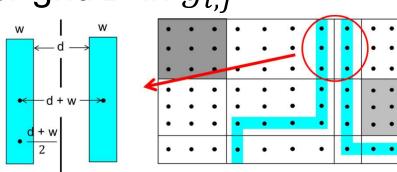


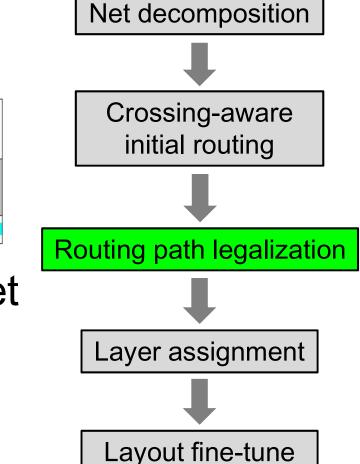

- Crossing consideration
 - Smaller occupancy, less crossing
 - > Route the net with $\sum g_{i,j}$ (occup.)
 - Update occupancy in routing region


Crossing-Aware Initial Routing (2/2)

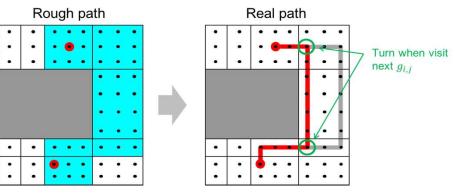
Calculate Routing Occupancy

 \geq How many nets will pass this $g_{i,j}$

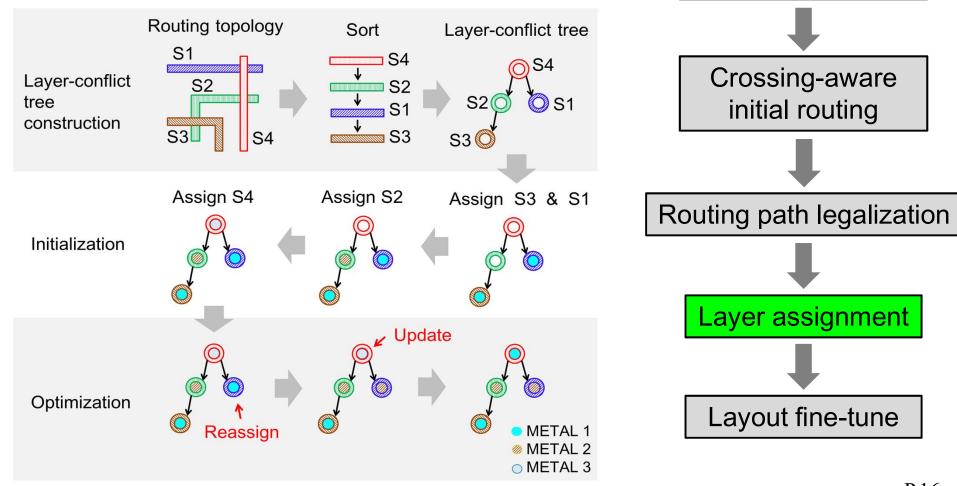

- Crossing consideration
 - Smaller occupancy, less crossing
 - > Route the net with $\sum g_{i,j}$ (occup.)
 - Update occupancy in routing region


Routing Path Legalization

Construct the routing graph

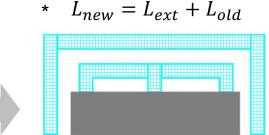

 \succ More finer grid *D* in $g_{i,j}$

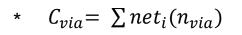
* D to $D \ge d + w$

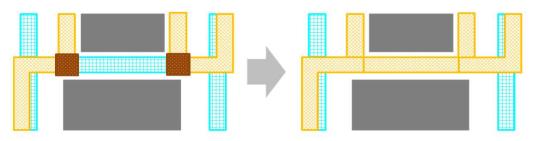


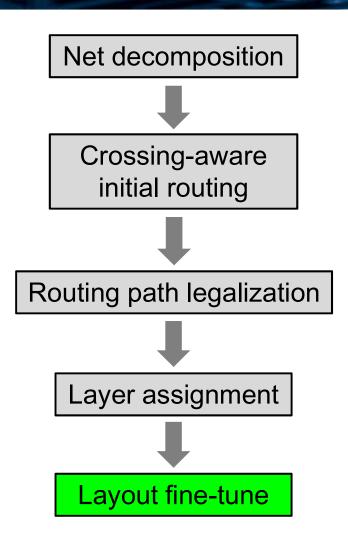
• Route the real path for each net

Layer Assignment


• Assign layer with minimal layers

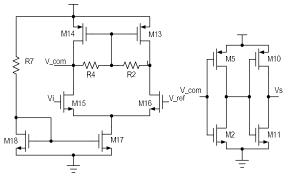

Net decomposition


Layout Fine-Tune

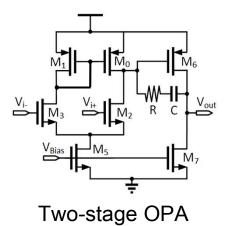

- Wire load consideration
 - Reroute multilayer nets
 - * $L_{ext} = n_{via} * R_{via}/R_{wire}$

Reassign layer to reduce via

- Introduction
- Problem Formulation
- Algorithm
- Experimental Results
- Conclusion


Environment and Test Circuits

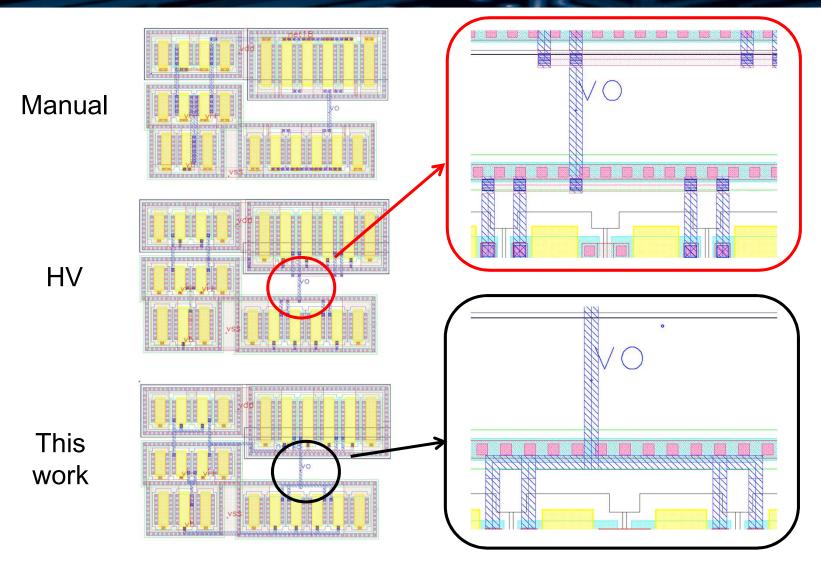
Programming language, Processor & Memory


C++, Intel Xeon 3.5GHz and 64GB memory

Test case with 0.18µm process
 ➤Two-stage OPA, comparator

Circuit name	# of blocks	# of nets	# of pins	Total area (μm²)	
Two-stage OPA	17	5	26	521.13	
Comparator	13	9	65	1318.94	

Comparator

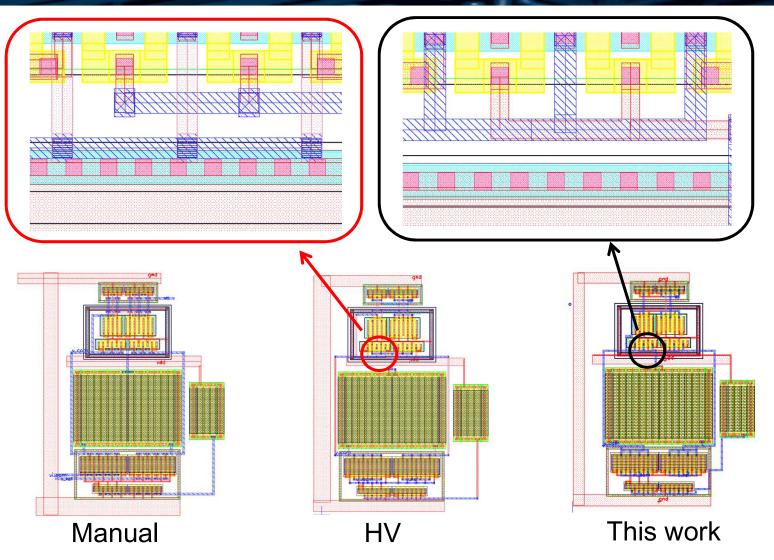


Two-stage OPA

Spec.	Pre-sim	Post-sim			Comparison		
		Manual	HV	This	Manual	HV	This
Gain≥ 80(dB)	82	81.5	79.2	81.3	-0.6%	-3.4%	-0.8%
GB ≥ 40(MHz)	45	43	39.3	43	-4.4%	-12.6%	-4.4%
PM ≥ 60 (°)	60	65	62	65	+8.3%	+3.3%	+8.3%
SR ≥ 40(V/µs)	40.2	42	41.5	42	+4.4%	+4.1%	+4.4%
Total wire length(µm)	-	67.6	81.8	78.9	1	1.21	1.17
*Via Usage	-	36	55	31	1	1.52	0.86
Total wire resistance	-	44.2	136.4	48.9	1	2.08	1.11

* The double vias at the same location are counted only once

Layout Comparison (OPA)


P.21

Comparator

Spec	Pre-sim		Post-sim		Comparison		
		Manual	HV	This	Manual	HV	This
Gain≥ 30(dB)	30.8	30.9	30.8	30.9	+0.3%	0%	+0.3%
GB ≥ 70(MHz)	70.8	72.4	71.1	73.2	2.2%	1.4%	3.3%
PM ≥ 60 (°)	60	60	60	60	0%	0%	0%
Power ≤ 0.25(mW)	0.23	0.21	0.21	0.21	-8.7%	-8.7%	-8.7%
Total wire length(µm)	-	272.94	273.85	268.55	1	1.003	0.984
*Via Usage	-	57	117	44	1	2.05	0.77
Total wire resistance	-	89.7	172.4	70.6	1	1.92	0.78

* The double vias at the same location are counted only once

Layout Comparison (Comparator)

- Introduction
- Problem Formulation
- Algorithm
- Experimental Results
- Conclusion

Conclusion

- Propose a routing algorithm that tries to minimize wire load instead of wire length
- Reduce crossing in initial routing stage
- Reduce the via usage and wire load in the layer assignment stage
- The performance loss after layout is significantly reduced with the proposed routing approach

Thanks for your listening