OCV Guided Clock Tree Topology Reconstruction

ASP-DAC 2018 Necati Uysal and Rickard Ewetz Department of Electrical and Computer Engineering University of Central Florida

Overview

- Preliminaries
- Previous studies
- Proposed techniques
- Experimental results

Timing constraints and timing slack

$$setup_slack_{ij} = T - t_i^{CQ} - t_{ij}^{max} - t_j^{S} + t_j - t_i - \delta_j - \delta_i$$
$$hold_slack_{ij} = t_i^{CQ} + t_{ij}^{min} - t_j^{H} + t_i - t_j - \delta_j - \delta_i$$

Delay variations introduced by OCV $\delta_i = c_{OCV} \cdot t_{CCA(i,j),i}$ $\delta_j = c_{OCV} \cdot t_{CCA(i,j),j}$

Leaf buffer slack graph (LB-SG) LB-SG: а b b а $w_{ji} = hold_slack_{ij}$ Combinational **SG:** $w_{ij} = setup_slack_{ij}$ FF_i FF_i logic

[10] J. Lu and B. Taskin. Post-CTS clock skew scheduling with limited delay buffering. Cir. and Sys., p224–227, 2009.

Handle multiple scenarios using compression

[11] V. Ramachandran. Construction of minimal functional skew clock trees. ISPD'12, pages 119–120, 2012.
 [6] R. Ewetz and C.-K. Koh. MCMM clock tree optimization based on slack redistribution using a reduced slack graph. ASP-DAC '16, pages 366 – 371, 2016.

LP Formulation

$$\begin{split} n \sum_{k \in V} c_{in} \Delta_k + c_{wns} \ pWNS + c_{tns} \ pTNS \\ + \ c_{ocv}) \Delta_i - (1 - c_{ocv}) \Delta_j - s_{ij} \leq w_{ij}, \\ s_{ij} \leq pWNS, \\ \sum_{s_{ij} \in E} s_{ij} = pTNS, \\ \text{Timing violation: } s_{ij} \geq 0 \\ \text{predicted WNS: } pWNS \\ \text{predicted TNS: } pTNS \end{split}$$

[11] V. Ramachandran. Construction of minimal functional skew clock trees. ISPD'12, pages 119–120, 2012.[3] R. Ewetz. A clock tree optimization framework with predictable timing quality. DAC'17, pages 13–18, 2017

Summary of Previous works

TNS reduction

[3] R. Ewetz. A clock tree optimization framework with predictable timing quality. DAC'17, pages 13–18, 2017 [10] J. Lu and B. Taskin. Post-CTS clock skew scheduling with limited delay buffering. In Intr. Midwest Sym. on Cir. and Sys., pages 224–227, 2009.

[11] V. Ramachandran. Construction of minimal functional skew clock trees. ISPD'12, pages 119–120, 2012. [12] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan. Clock tree resynthesis for multi-corner multimode timing closure. IEEE TCAD, pages 589–602, 2015.

How to reduce pWNS and pTNS?

- Tree topology reconstruction to realize negative delay adjustments [12].
- (this presentation): OCV Guided Clock Tree Topology Reconstruction.

[12] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan. Clock tree resynthesis for multi-corner multi-mode timing closure. IEEE TCAD, pages 589–602, 2015 (best paper at ISPD 2013).

Three types of topology changes

OCV Guided tree topology construction!

Distance in topology:
1. Closer
2. Further
3. Same

OCV impact: Reduced Increased Unchanged

Predicted Leaf Buffer Slack Graph (pLB-SG)

pWNS is bounded by strongly connected component (SCC) in pLB-SG! S: Constraints in the SCC L: LBs connected in SCC Red circle L = {3,4}

Improving pWNS!

Candidates (b_p, b_c) Reduce delay variations in S (Potential to improve pWNS) $\Delta\delta$ is change of delay variations in S

Identify LBs to be placed closer in the topology

- 1. Remove edges that are larger than pWNS
- 2. Detect SCC using two DFS [2]

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Intro. to Algorithms. McGraw-Hill Higher Education, 2001.

Enumeration of candidates

Condition:

(i) Generate pairs in Pi and Pj (ii) Check timing requirement $(t_{b_c} = t_{b_p} + t_{b_p b_c})$

 $t_{b_pb_c}$ Estimated using linear delay model Apply pairwise to buffers in L

pWNS is not guaranteed to be improved. Careful evaluation is required!

Evaluation of candidates

- Accurate evaluation of $m=(b_p, b_c)$
 - Make topology change
 - Update timing
 - Find pWNS and pTNS by solving LP
 - Evaluate:

$$cost(m) = c_{cap}r(m) + c_{in}pCost(m) + c_{wns}pWNS(m) + c_{tns}pTNS$$

Cost of connecting b_p to b_c

Only drawback is long run-time!

Two phase-evaluation

- Rank all using fast metric
- Evaluate top-k candidates with accurate metric
- Fast evaluation
 - Cost(m) = $t_{b_c}^{pre} t_{b_p}^{post}$
 - (i) Short buffer chain
 - (ii) Closer in topology

Experimental Setup

- Open cores Verilog spec. synthesized using Synopsys tool chain.
- Clock trees obtained after CTS
- Evaluation in TNS and WNS
 - Nominal timing computed in each scenario (NGSPICE simulations)
 - OCV applied with $c_{OCV} = 0.10$

Name	Scenarios (num)	Modes (num)	Corners (num)	Sinks (num)	Skew constraints (num)
fpu	9	7	3	715	213225
pci_bridge	9	7	3	3582	1113894
ecg	9	7	3	7674	798082
des3	9	7	3	8808	154364
aes	9	7	3	13216	637936

[4] R. Ewetz, S. Janarthanan, and C.-K. Koh. Benchmark circuits for clock scheduling and synthesis. https://purr.purdue.edu/publications/1759, 2015.

Evaluated clock tree structures

- Pre-CTO
- CTO-P [6]
- CTO-R [3]
- OGR
- OGR-CTO

Initial clock tree Clock tree after CTO in [6] Clock tree after CTO in [3] After pTNS and pWNS optimization OGR after CTO [3]

On circuit aes

Results

Circuit (name)	Method	TNS (ps)	WNS (ps)	pTNS (ps)	pWNS (ps)	Cap (pF)	Run-time (min)
fpu	Pre-CTO	791	44	0	0	3.23	4
	CTO-P [6]	0	0			3.64	8
	CTO-R [3]	0	0			3.57	8
	OGR	n/a	n/a	n/a	n/a	n/a	n/a
	OGR-CTO	0	0			3.57	4
Norm.	Pre-CTO	719	41	52	11	10.42	9
	CTO-P [6]	93	15			11.10	28
	CTO-R [3]	75	11			11.06	40
	OGR	20178	34	0	0	10.26	17
	OGR-CTO	0	0			11.03	22

Results cont.

Circuit (name)	Method	TNS (ps)	WNS (ps)	pTNS (ps)	pWNS (ps)	Cap (pF)	Run-time (min)
ecg	Pre-CTO	2603	44	0	0	16.76	33
	CTO-P [6]	6	2			17.59	27
	CTO-R [3]	0	0			17.69	14
	OGR	n/a	n/a	n/a	n/a	n/a	n/a
	OGR-CTO	0	0			17.69	15
des3	Pre-CTO	28511	99	19535	43	81.79	32
	CTO-P [6]	29761	79			98.74	254
	CTO-R [3]	20282	47			88.71	173
	OGR	24658	100	3250	32	81.97	30
	OGR-CTO	17281	35			90.87	193

Results cont.

Circuit (name)	Method	TNS (ps)	WNS (ps)	pTNS (ps)	pWNS (ps)	Cap (pF)	Run-time (min)
aes	Pre-CTO	7895	52	5036	31	32.50	30
	СТО-Р [6]	6716	41			36.58	94
	CTO-R [3]	4950	33			34.57	74
	OGR	10246	83	2294	15	33.49	46
	OGR-CTO	2747	20			36.49	78
Norm.	Pre-CTO	0%	0%	0%	0%	1.00	
	CTO-P [6]	59%	59%			1.12	
	CTO-R [3]	74%	71%			1.07	
[OGR	-73%	-14%	79%	59%	1.01	
	OGR-CTO	80%	84%			1.09	

Summary

- Improve pWNS and pTNS using OCV guided clock tree topology reconstruction
- Better and faster topology changes?