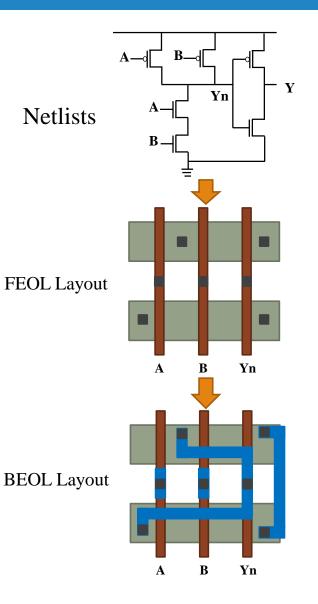
Cohesive Techniques for Cell Layout Optimization Supporting 2D Metal-1 Routing Completion

Kyeongrok Jo, Seyong Ahn, Taewhan Kim and Kyumyung Choi

School of Electrical and Computer Engineering

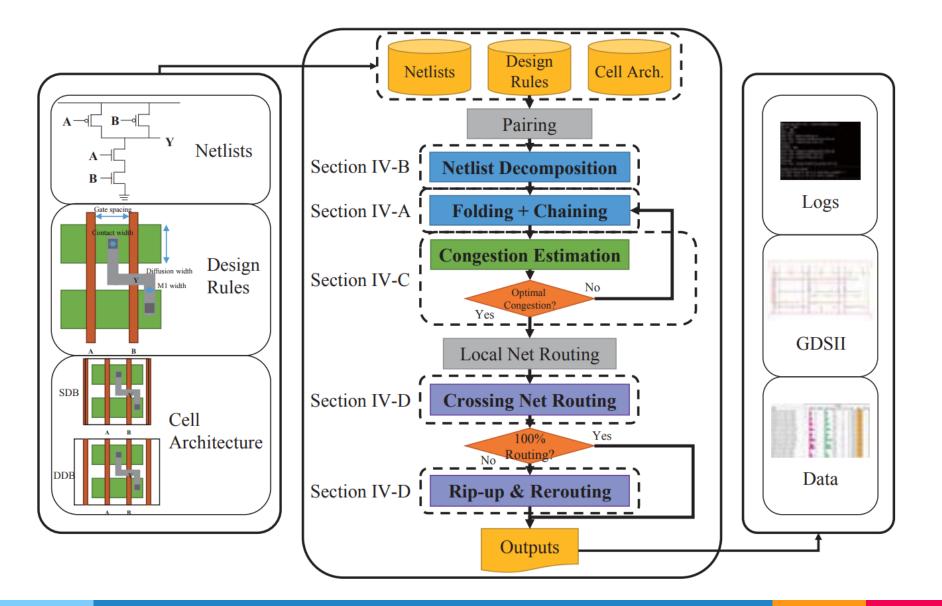
Seoul National University, Korea


Motivation

• Till today: Standard cell layout is done manually in industry

- Cell topology generation & internal net routing are not tightly coupled
 Produce inferior layouts wrt. cell size and routing completion
- Now: Increase the demand for fast and automatic exploration & generation of standard cell layouts
 - Need a quick evaluation vehicle of DTCO(design-technology cooptimization)
 - Need quick and quality competitive layout generation
 - Multiple sets of library to cope with broad range of product groups
 - Libraries for derivative processes

Cell Layout Generation


- Cell topology generation (Front End Of Line layout)
 - Determine gate poly order
 - Minimize area
 & enable 100% of internal routing
- Internal routing (Back End Of Line layout)
 - Assume 2D metal-1 routing
 - Route internal nets
 - Minimizing M2 usage

Related Works

- Design Rule Evaluator ^[1]
 - Evaluate design rules and cell layout simultaneously
 - BEOL layout is not generated
- Standard cell routing via SAT ^[4]
 - Find legal routing among candidate routes by SAT
 - No consideration of FEOL to enhance routability
 - Run time and memory explosion
- BonnCell: Automatic layout of leaf cells ^[5]
 - Generate cell layouts through recursive enumeration
 - Internal net routing using mixed-integer programming
 - No consideration of correlation between FEOL & BEOL

Proposed Flow of Cell Layout Generation

Cohesive Technologies for Cell Layout Optimization

Newly devised following methodologies

1. Chaining combined with folding

2. Netlist decomposition

3. Gate poly ordering combined with routing congestion estimation

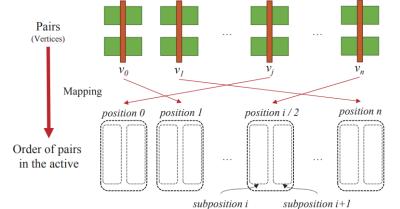
4. 2D routing with minimal resource

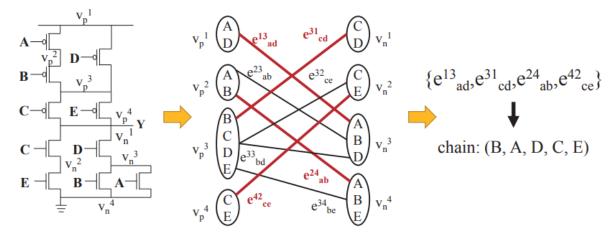
Folding

 Splitting a transistor with large width into multiple smaller ones in parallel connection

Chaining

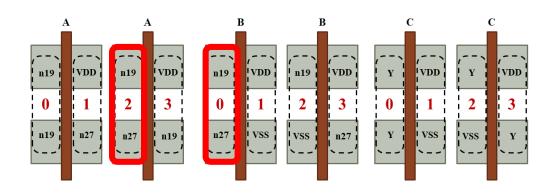
 Abutting transistor pairs by sharing the same active area

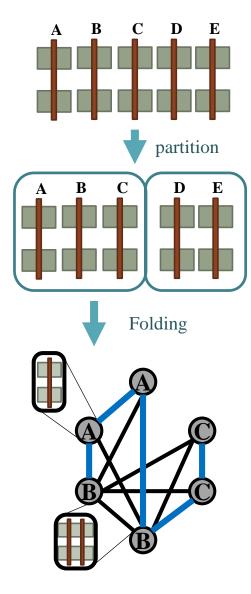

- **Problem formulation**
 - Given: transistor pairs including folded ones
 - Objective: abut the pairs as a chain


α

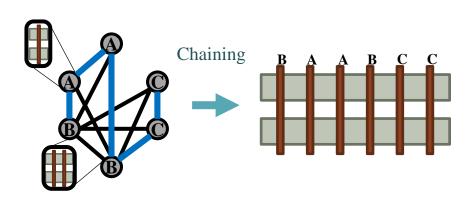
α

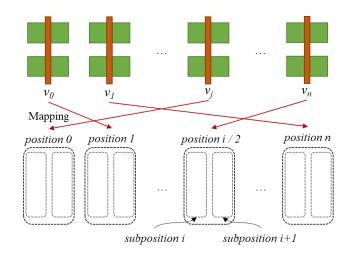
a

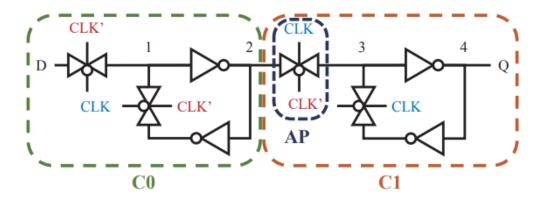

- Previous method ^[6]
 - Fold all transistors larger than maximum width
 - Netlist \rightarrow Bipartite graph \rightarrow Transistor chain



- Significant runtime sacrifices
 - Edges of bipartite graph increase significantly when transistors are folded
 → excessive exploration of redundant folded transistors
 - ≥12 hours for cells having more than 20 folds


Proposed method

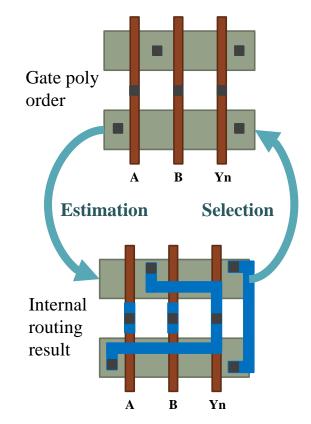

- 1. Partition transistor pairs to be abutted into a single chain
 - Use previous Bipartite graph method^[6]
 - Consider transistor pairs as unfolded
- 2. Derive transistor abutment graph
 - Vertex: transistor pair including folded one
 - Edge: possibility of abutment between tr. Pairs
 - Type: source/drain combination of a pair


- 3. Formulate as Hamiltonian path problem
 - Hamiltonian path represents <u>a chain with abutted transistors</u>
- 4. Solve the problem with SAT formulation
 - Integration of gate poly ordering and abutment constraints
 - SAT solver reduce run time
 - Generate multiple gate poly ordering candidates
 → higher possibility of internal routing completion

2. Netlist Decomposition

• Combine theoretical knowledge and designer's experience

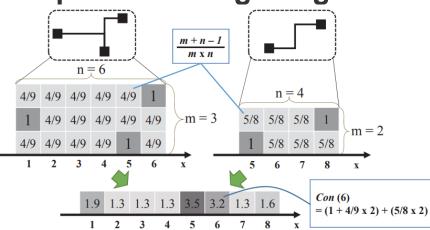
• Partition a netlist if multiple data flow feedback loops exist

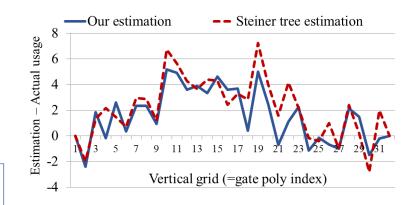

Results

- Trade-off between area optimization and internal routing completion
- Proof of effectiveness by experiments

 → increased routing completion for sequential logic cells (flip-flops)

3. Gate Poly Ordering Combined with Routing Congestion Estimation

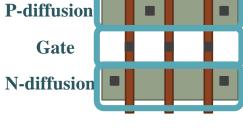

- Correlation of gate poly order and internal routing result
 - Not fully considered in previous related works
- Ordering gate polys to have higher possibility of routing completion
- Estimate routing congestion for every instance of FEOL layout

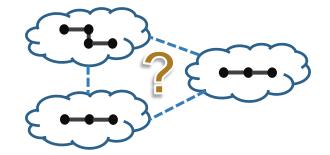


• Find ordering instances with less routing congestion

3. Gate Poly Ordering Combined with Routing Congestion Estimation

Proposed routing congestion estimation




- Estimation for each net
 - Bounding box of all pins
 - Possibility of grid occupation
 - Contact: 1
 - Otherwise: (Half-perimeter / # of bins)
- More precise estimation compared to STST (Single Trunk Steiner Tree) method
 - Actual vertical track usage vs. estimated usage

4. 2D Routing with Minimal Resource

- Routing Strategy
 - Local nets
 - Connection of contacts belongs to a single region
 - Crossing nets
 - Connection of contacts in between multiple regions
 - Local nets → Crossing nets

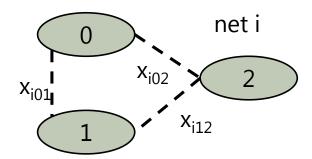
- Issues on crossing net routings
 - Planarity
 - Possibility of routing to be done in a single plane
 - Sequentiality
 - Effect of routing order on routing completion

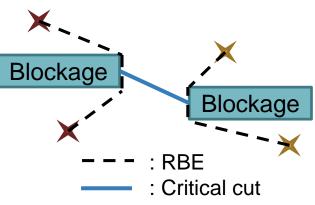
4. 2D Routing with Minimal Resource

Rubber Band Equivalent (RBE)

 Shortest path connecting two points, detouring blockages

Critical Cut


A shortest line between two blockages' corner or tip


Planarity Check

• All critical cuts \rightarrow flow \leq capacity

Solved with an ILP

- Minimized routing length with
 - Sub nets should be connected
 - Planarity must be satisfied

• PDK & Spice netlist

- 45nm FreePDK & NanGate standard cell library
- 28nm Industry partner's PDK & cell library
- Net specification of 28nm cell library

	#Cells	#Nets	#Nets per cell
Comb. logic	48	354	4-12
Flip-flops	8	151	14-24
Total	56	505	4-24

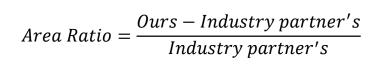
Results

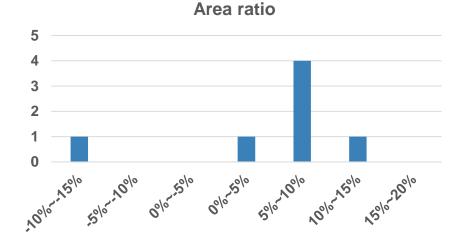
- Cell generation
 - **100%** routing completion with 9 & 11 tracks
- Run time:
 - About **1 hour** for 28nm library (56 representative cells)
 - \leq 3 hours for NanGate cell library (all cells)

Effectiveness of our techniques

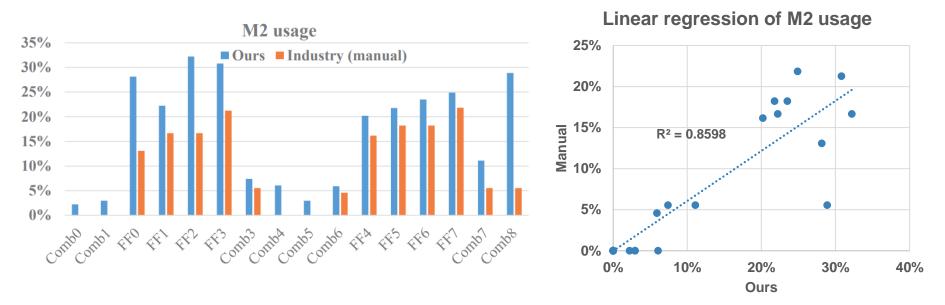
- Netlist decomposition
 - → Routing completion increase(M1: 22%p, total: 17%p) with run time reduction
- Chaining combined with folding
 → 83% run time reduction, with 7%p total routing completion increase
- New congestion estimation method
 → Ensure 100% routing completion
- Cross routing with planarity
 → Ensure 100% routing completion

			Routing		
	Techniques	Netlist	completion		Run time (sec.)
			M1	M1+M2	TG / Rout' / Total
		Combs.	96%	100%	930 / 50 / 980
	All-applied	FFs	70%	100%	683 / 267 / 950
		Total	89%	100%	1613 / 317 / 1930
	Netlist	Combs.	-	-	-/-/-
	Decomp. (x)	FFs	48%	83%	1124 / 163 / 1287
	Chaining + Folding (x)	Combs.	85%	89%	10394 / 36 / 10430
		FFs	70%	100%	687 / 261 / 948
		Total	81%	93%	11081 / 297 / 11378
	New Congestion	Combs.	97%	100%	933 / 111 / 1044
	Estimation (x)	FFs	61%	91%	687 / 261 / 948
		Total	86%	97%	1522 / 266 / 1788
	Planar Cross Routing (x)	Combs.	95%	99%	932 / 47 / 979
		FFs	70%	100%	683 / 260 / 943
	Kouning (X)	Total	88%	99%	1615 / 307 / 1922


Evaluation of layout quality


Comparison with industry partner's library developed manually

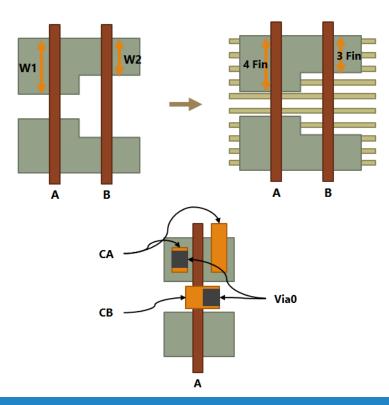
Layout area

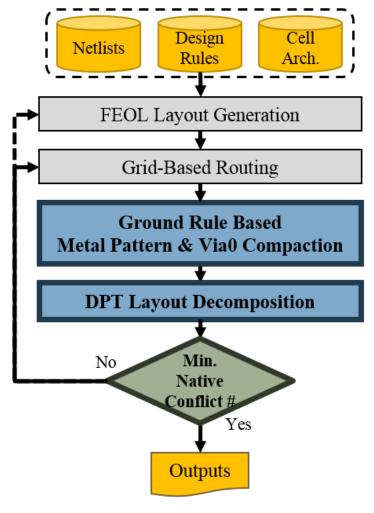

- Flip-flop area is larger than that of manual by 5~10%
- In digital block, comb. Cell (60%) + flip-flops (40%)
 → Area overhead in digital block = 2~4%

Cell type	Cell count	Area ratio
Comb. logic	48	0%
Flip-flops	8	5~10%

• M2 Usage

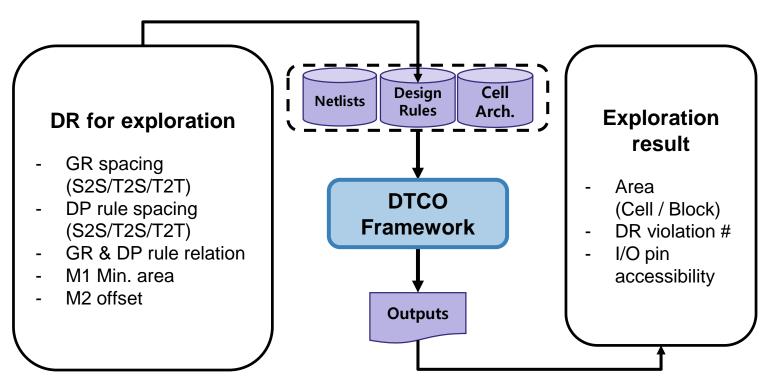
- Occupy 7%p more M2 resource on average
- Quickly generated (several days vs. within an hour)
- Positive correlation with manual


Conclusions & Ongoing works


- Full automation for generating cell layouts
 - Cohesive techniques are effective to improve quality of the cell generator
 - Comparable to the industry partner's manual layouts with a extremely short time
 - Can be used as a cornerstone for migrating from planar technology to 3D FinFET technology
 - Can be used valuably as core engine in DTCO

Ongoing works

Ongoing works


- Adaptation for FinFET technology
 - Discrete Fin number & MEOL
 - Increased design rule complexity
 - DPT (Double patterning) is needed

Ongoing works

• DTCO (Design Technology Co-Optimization) Framework

- Can be used as exploration tool of design rule and cell architecture
- Enable co-optimization of design & process technology

Thank you!

Q & A