Architectures and Algorithms for User Customization of CNNs

Barend Harris, Mansureh S. Moghaddam, Duseok Kang, Inpyo Bae, Euiseok Kim, Hyemi Min, Hansu Cho, Sukjin Kim, *Bernhard Egger*, Soonhoi Ha, Kiyoung Choi

ASP-DAC 2018

Classification with Convolutional Neural Networks (CNNs)

CNNs have shown excellent performance in many domains

deep CNN + big data set + (computationally intensive) training

Classification with Convolutional Neural Networks (CNNs)

Large models have some inherent limitations

- difficult to obtain representative training data
- the real world scenario may differ from the training scenario

The Wolfram Language Image Identification Project The Wolfram Language
Image Identification Project

Classification with Convolutional Neural Networks (CNNs)

We propose:

A computationally light technique to increase the accuracy of a large general model using a small amount of on-device retraining

The Wolfram Language Image Identification Project

Crocodylus porosus (animal) alt. scientific names: Crocodylus porosus minikanna, Crocodylus porosus ... genus: Crocodylus max. recorded lifespan: 41.7 years

Consider Handwriting Recognition

CNN-based models achieve good accuracy on big data

- around 90% on NIST¹ (a-zA-Z0-9) for train/test data set splits obtained from many individuals
 - 1) Ciresan et al. Convolutional neural network committees for handwritten character classification. International Conference on Document Analysis and Recognition, 2011

Consider Handwriting Recognition

Trained models are integrated into end-user devices

Consider Handwriting Recognition

Performance for particular individual users not stellar

Handwriting Recognition

General Model (adapted LeNet-5²) trained with NIST database³

- 82% general test set accuracy
- 76% when tested against individual user data

2) Lecun et al. Gradient-based learning applied to document recognition. IEEE, 19983) P.J. Grother. NIST special database 19 handprinted forms and characters database. National Institute of Standards and Technology, 2016.

On-Device Retraining is Challenging

Energy, privacy, data size, catastrophic forgetting

Methodology

Target Device

Mobile end-user device has

- a general purpose processor
- a DNN processor
- additional accelerators (mobile GPU, etc.)

Basic Inference Engine (BIE)

- a large CNN accelerated with a high power dedicated accelerator
 - e.g. dedicated NN processor, FPGA, ASIC processor, mobile GPU

Augmenting Engine (AE)

a small CNN accelerated with a low power general purpose accelerator

Pre-Training and Retraining

Application to Handwriting Recognition

Task: Handwritten Character Recognition

Handwritten Character Recognition

- 62 classes (a-z, A-Z, 0-9)
- General Data:
 - NIST Special Database 19

User Data:

 gathered with custom Android App

Handwritten Character Architecture

BIE: LeNet-5

AE: Small Convolutional Network

Relative overhead of AE wrt BIE

	MACC	#Neurons	#Weights		
Inference	2%	12%	4%		
Training	2%	12%	4%		

Overhead of networks on one image

	MACC	#Neurons	#Weights		
BIE Inference	2,319 k	79 kB	1,826 kB		
AE Inference	44 k	9 kB	78 kB		
BIE Training	4,167 k	155 kB	3,652 kB		
AE Training	83 k	15 kB	157 kB		

Results for 10 Individual Users

1 retraining set = 10 epochs of 1 full data set (62 characters)

Results for One Individual User

initial: 77.4%

CCCCCCCCC ٩ С P P P 9 9 P P 9 0 à ٩ Ś Shu XXX Ś SSS S U S uuuu

UYWXXZ

after 1 set: 86.1%	after 3 sets: 94.2%	after 10 sets: 95.2%
114CCCCCfffffff 111111111111111000 0000000000	00000000000000000000000000000000000000	0000999999Cdllll 000PPPP99VVW
after 2 sets: 90.3%	after 5 sets: 92.6%	after 30 sets: 96.0%
0000000099999999999 ffllllllllllllll PPPPPPPPSUUUUUUUU	C4LLLO0000000000 PPPPPPP9999999555 SS SHUYVVVWZ	0000099CL0PPPP99 99 4VWWZZ

20

Config Memory	PE0	-[PE1 (mem)	PE2 (mem)	PE3	
	PE4 (mulf)	-[PE5 (mem, mulf)	PE6 (mem, arithf)	PE7	Data
	PE8 (arithf)	_	PE9 (mem, arithf)	PE10 (mem, mulf)	PE11 (arithf)	Memory
	PE12 (mulf)	-[PE13 (mem)	PE14 (mem)	PE15	

Accelerating DNNs on a Modulo-Scheduled Coarse-Grained Reconfigurable Architecture

On Device Training with CGRAs

CGRAs are effective for CNN processing as:

- CNN processing mainly consists of matrix multiplications
 - contain many high iteration loops
- ideal for software pipelining
 - can exploit loop level parallelism
 - hide memory latency

CGRA Data flow mode is similar to recently proposed CNN accelerator chips

Adapted CGRA Architecture

- We specifically use an adapted Samsung Reconfigurable Processor (SRP)
 - already used in Samsung smartphones, TV's, printers and cameras

Hybrid VLIW-CGRA architecture

- 4x4 grid of 16 PEs
- 8 x memory ld/st
- 4 x floating point add/mul
- 320KB on-chip SRAM

Register File PE0 PE1 PE2 PE3 (mem) (mem) PE4 PE5 PE7 PE6 Config (mulf) (mem, mulf) (mem, arithf) Data Memory Memory PE8 PE9 **PE11 PE10** (arithf) (mem, arithf) (mem, mulf) (arithf) **PE12 PE13 PE14** PE15 (mulf) (mem) (mem)

Custom CGRA C compiler

• increase schedulable scope by loop unrolling, fusion & interchange

CGRA Acceleration results

Time taken to train on one image

• 45x speedup compared to VLIW and ARMv7

CGRA power

Estimated power used for one image:

- **ARMv7: 49 fold** power reduction
- VLIW: 3 fold power reduction

	Average Power [mW]	Energy [mJ]
ARMv7	169	11.83
VLIW	50	3.90
CGRA	150	0.24

Conclusion

Adapting general CNN models to user data can increase the practicality of CNN applications

BIE - AE architecture allows for:

- increased user accuracy
- small training overhead
- Handwritten Character Recognition:
 - 17% accuracy increase
 - > 76.8% to 93.2%

Can use CGRAs to accelerate on device training effectively

Future Work

Apply to more complex problem domains

- Hangul character classification
 - 520 class task
 - > 2350 class task
- Speech Recognition

Thank you!

Initial training: retrain BIE + AE with big data

On-device retraining: retrain only AE using user-specific data

Training Flow

Detailed Results

	al	1	lett	er	low	er	upp	er	dig	jit
Dataset	before	after	before after		before	after	before	after	before	after
NIST	82.1	73.9	69.7	73.8	88.8	87.0	96.2	96.1	98.2	96.7
User 1	68.6	87.3	74.6	91.2	86.5	86.5 96.2 95.8 9		98.5	97.0	99.0
User 2	78.4	97.1	78.1	98.7	94.2	100	100	100	91.0	100
User 3	78.1	93.6	76.0	94.8	97.3	98.9	99.2	99.6	98.0	100
User 4	80.0	95.5	78.5	96.5 95.4 98.9		99.2	100	99.0	100	
User 5	73.7	92.1	73.3	92.3	85.4	98.9	94.2	98.5	98.0	100
User 6	77.4	91.1	79.2	93.3	97.3	99.2	97.7	100	99.0	100
User 7	75.0	93.5	75.6	96.5	90.8	99.6	100	100	100	100
User 8	77.4	95.6	78.7	96.5	93.1	99.6	98.5	100	100	100
User 9	82.1	97.4	81.2	97.9	95.0	99.2	99.6	100	100	100
User 10	72.1	89.0	72.7	90.4	90.4	98.8	89.6	97.7	93.0	99.0
Average	76.3	93.2	76.8	94.8	92.5	98.9	97.4	99.4	97.5	99.8